亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of finding the unique low dimensional decomposition of a given matrix has been a fundamental and recurrent problem in many areas. In this paper, we study the problem of seeking a unique decomposition of a low rank matrix $Y\in \mathbb{R}^{p\times n}$ that admits a sparse representation. Specifically, we consider $Y = A X\in \mathbb{R}^{p\times n}$ where the matrix $A\in \mathbb{R}^{p\times r}$ has full column rank, with $r < \min\{n,p\}$, and the matrix $X\in \mathbb{R}^{r\times n}$ is element-wise sparse. We prove that this sparse decomposition of $Y$ can be uniquely identified, up to some intrinsic signed permutation. Our approach relies on solving a nonconvex optimization problem constrained over the unit sphere. Our geometric analysis for the nonconvex optimization landscape shows that any {\em strict} local solution is close to the ground truth solution, and can be recovered by a simple data-driven initialization followed with any second order descent algorithm. At last, we corroborate these theoretical results with numerical experiments.

相關內容

We consider random-design linear prediction and related questions on the lower tail of random matrices. It is known that, under boundedness constraints, the minimax risk is of order $d/n$ in dimension $d$ with $n$ samples. Here, we study the minimax expected excess risk over the full linear class, depending on the distribution of covariates. First, the least squares estimator is exactly minimax optimal in the well-specified case, for every distribution of covariates. We express the minimax risk in terms of the distribution of statistical leverage scores of individual samples, and deduce a minimax lower bound of $d/(n-d+1)$ for any covariate distribution, nearly matching the risk for Gaussian design. We then obtain sharp nonasymptotic upper bounds for covariates that satisfy a "small ball"-type regularity condition in both well-specified and misspecified cases. Our main technical contribution is the study of the lower tail of the smallest singular value of empirical covariance matrices at small values. We establish a lower bound on this lower tail, valid for any distribution in dimension $d \geq 2$, together with a matching upper bound under a necessary regularity condition. Our proof relies on the PAC-Bayes technique for controlling empirical processes, and extends an analysis of Oliveira devoted to a different part of the lower tail.

This paper studies the problem of matching two complete graphs with edge weights correlated through latent geometries, extending a recent line of research on random graph matching with independent edge weights to geometric models. Specifically, given a random permutation $\pi^*$ on $[n]$ and $n$ iid pairs of correlated Gaussian vectors $\{X_{\pi^*(i)}, Y_i\}$ in $\mathbb{R}^d$ with noise parameter $\sigma$, the edge weights are given by $A_{ij}=\kappa(X_i,X_j)$ and $B_{ij}=\kappa(Y_i,Y_j)$ for some link function $\kappa$. The goal is to recover the hidden vertex correspondence $\pi^*$ based on the observation of $A$ and $B$. We focus on the dot-product model with $\kappa(x,y)=\langle x, y \rangle$ and Euclidean distance model with $\kappa(x,y)=\|x-y\|^2$, in the low-dimensional regime of $d=o(\log n)$ wherein the underlying geometric structures are most evident. We derive an approximate maximum likelihood estimator, which provably achieves, with high probability, perfect recovery of $\pi^*$ when $\sigma=o(n^{-2/d})$ and almost perfect recovery with a vanishing fraction of errors when $\sigma=o(n^{-1/d})$. Furthermore, these conditions are shown to be information-theoretically optimal even when the latent coordinates $\{X_i\}$ and $\{Y_i\}$ are observed, complementing the recent results of [DCK19] and [KNW22] in geometric models of the planted bipartite matching problem. As a side discovery, we show that the celebrated spectral algorithm of [Ume88] emerges as a further approximation to the maximum likelihood in the geometric model.

Barnette's Conjecture claims that all cubic, 3-connected, planar, bipartite graphs are Hamiltonian. We give a translation of this conjecture into the matching-theoretic setting. This allows us to relax the requirement of planarity to give the equivalent conjecture that all cubic, 3-connected, Pfaffian, bipartite graphs are Hamiltonian. A graph, other than the path of length three, is a brace if it is bipartite and any two disjoint edges are part of a perfect matching. Our perspective allows us to observe that Barnette's Conjecture can be reduced to cubic, planar braces. We show a similar reduction to braces for cubic, 3-connected, bipartite graphs regarding four stronger versions of Hamiltonicity. Note that in these cases we do not need planarity. As a practical application of these results, we provide some supplements to a generation procedure for cubic, 3-connected, planar, bipartite graphs discovered by Holton et al. [Hamiltonian Cycles in Cubic 3-Connected Bipartite Planar Graphs, JCTB, 1985]. These allow us to check whether a graph we generated is a brace.

In this work, we propose a method for speeding up linear regression distributively, while ensuring security. We leverage randomized sketching techniques, and improve straggler resilience in asynchronous systems. Specifically, we apply a random orthonormal matrix and then subsample in \textit{blocks}, to simultaneously secure the information and reduce the dimension of the regression problem. In our setup, the transformation corresponds to an encoded encryption in an \textit{approximate} gradient coding scheme, and the subsampling corresponds to the responses of the non-straggling workers; in a centralized coded computing network. We focus on the special case of the \textit{Subsampled Randomized Hadamard Transform}, which we generalize to block sampling; and discuss how it can be used to secure the data. We illustrate the performance through numerical experiments.

We present the first algorithm for regular expression matching that can take advantage of sparsity in the input instance. Our main result is a new algorithm that solves regular expression matching in $O\left(\Delta \log \log \frac{nm}{\Delta} + n + m\right)$ time, where $m$ is the number of positions in the regular expression, $n$ is the length of the string, and $\Delta$ is the \emph{density} of the instance, defined as the total number of states in a simulation of the position automaton. This measure is a lower bound on the total number of states in simulations of all classic polynomial sized finite automata. Our bound improves the best known bounds for regular expression matching by almost a linear factor in the density of the problem. The key component in the result is a novel linear space representation of the position automaton that supports state-set transition computation in near-linear time in the size of the input and output state sets.

A {\em universal 1-bit compressive sensing (CS)} scheme consists of a measurement matrix $A$ such that for all signals $x$ belonging to a particular class, $x$ can be approximately recovered from $\textrm{sign}(Ax)$. 1-bit CS models extreme quantization effects where only one bit of information is revealed per measurement. We focus on universal support recovery for 1-bit CS in the case of {\em sparse} signals with bounded {\em dynamic range}. Specifically, a vector $x \in \mathbb{R}^n$ is said to have sparsity $k$ if it has at most $k$ nonzero entries, and dynamic range $R$ if the ratio between its largest and smallest nonzero entries is at most $R$ in magnitude. Our main result shows that if the entries of the measurement matrix $A$ are i.i.d.~Gaussians, then under mild assumptions on the scaling of $k$ and $R$, the number of measurements needs to be $\tilde{\Omega}(Rk^{3/2})$ to recover the support of $k$-sparse signals with dynamic range $R$ using $1$-bit CS. In addition, we show that a near-matching $O(R k^{3/2} \log n)$ upper bound follows as a simple corollary of known results. The $k^{3/2}$ scaling contrasts with the known lower bound of $\tilde{\Omega}(k^2 \log n)$ for the number of measurements to recover the support of arbitrary $k$-sparse signals.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Transformer based architectures have become de-facto models used for a range of Natural Language Processing tasks. In particular, the BERT based models achieved significant accuracy gain for GLUE tasks, CoNLL-03 and SQuAD. However, BERT based models have a prohibitive memory footprint and latency. As a result, deploying BERT based models in resource constrained environments has become a challenging task. In this work, we perform an extensive analysis of fine-tuned BERT models using second order Hessian information, and we use our results to propose a novel method for quantizing BERT models to ultra low precision. In particular, we propose a new group-wise quantization scheme, and we use a Hessian based mix-precision method to compress the model further. We extensively test our proposed method on BERT downstream tasks of SST-2, MNLI, CoNLL-03, and SQuAD. We can achieve comparable performance to baseline with at most $2.3\%$ performance degradation, even with ultra-low precision quantization down to 2 bits, corresponding up to $13\times$ compression of the model parameters, and up to $4\times$ compression of the embedding table as well as activations. Among all tasks, we observed the highest performance loss for BERT fine-tuned on SQuAD. By probing into the Hessian based analysis as well as visualization, we show that this is related to the fact that current training/fine-tuning strategy of BERT does not converge for SQuAD.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.

北京阿比特科技有限公司