亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel deep-learning-based method to cluster words in documents which we apply to detect and recognize tables given the OCR output. We interpret table structure bottom-up as a graph of relations between pairs of words (belonging to the same row, column, header, as well as to the same table) and use a transformer encoder model to predict its adjacency matrix. We demonstrate the performance of our method on the PubTables-1M dataset as well as PubTabNet and FinTabNet datasets. Compared to the current state-of-the-art detection methods such as DETR and Faster R-CNN, our method achieves similar or better accuracy, while requiring a significantly smaller model.

相關內容

This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term across the Sydney Metropolitan Area. Leveraging a dataset that encompasses detailed records of traffic incidents, road network characteristics, and socio-economic indicators, we train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost. The models are assessed using Root Mean Square Error (RMSE) for regression tasks and F1 score for classification tasks. Our experimental results demonstrate that XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold. For classification, the 30-minute threshold balances performance with 70.84% short-term duration classification accuracy and 62.72% long-term duration classification accuracy. Feature importance analysis, employing both tree split counts and SHAP values, identifies the number of affected lanes, traffic volume, and types of primary and secondary vehicles as the most influential features. The proposed methodology not only achieves high predictive accuracy but also provides stakeholders with vital insights into factors contributing to incident durations. These insights enable more informed decision-making for traffic management and response strategies. The code is available by the link: //github.com/Future-Mobility-Lab/SydneyIncidents

Researchers would often like to leverage data from a collection of sources (e.g., primary studies in a meta-analysis) to estimate causal effects in a target population of interest. However, traditional meta-analytic methods do not produce causally interpretable estimates for a well-defined target population. In this paper, we present the CausalMetaR R package, which implements efficient and robust methods to estimate causal effects in a given internal or external target population using multi-source data. The package includes estimators of average and subgroup treatment effects for the entire target population. To produce efficient and robust estimates of causal effects, the package implements doubly robust and non-parametric efficient estimators and supports using flexible data-adaptive (e.g., machine learning techniques) methods and cross-fitting techniques to estimate the nuisance models (e.g., the treatment model, the outcome model). We describe the key features of the package and demonstrate how to use the package through an example.

Machine learning (ML) methods, which fit to data the parameters of a given parameterized model class, have garnered significant interest as potential methods for learning surrogate models for complex engineering systems for which traditional simulation is expensive. However, in many scientific and engineering settings, generating high-fidelity data on which to train ML models is expensive, and the available budget for generating training data is limited, so that high-fidelity training data are scarce. ML models trained on scarce data have high variance, resulting in poor expected generalization performance. We propose a new multifidelity training approach for scientific machine learning via linear regression that exploits the scientific context where data of varying fidelities and costs are available: for example, high-fidelity data may be generated by an expensive fully resolved physics simulation whereas lower-fidelity data may arise from a cheaper model based on simplifying assumptions. We use the multifidelity data within an approximate control variate framework to define new multifidelity Monte Carlo estimators for linear regression models. We provide bias and variance analysis of our new estimators that guarantee the approach's accuracy and improved robustness to scarce high-fidelity data. Numerical results demonstrate that our multifidelity training approach achieves similar accuracy to the standard high-fidelity only approach with orders-of-magnitude reduced high-fidelity data requirements.

The paper analyzes how the enlarging of the sample affects to the mitigation of collinearity concluding that it may mitigate the consequences of collinearity related to statistical analysis but not necessarily the numerical instability. The problem that is addressed is of importance in the teaching of social sciences since it discusses one of the solutions proposed almost unanimously to solve the problem of multicollinearity. For a better understanding and illustration of the contribution of this paper, two empirical examples are presented and not highly technical developments are used.

This article presents a novel and succinct algorithmic framework via alternating quantum walks, unifying quantum spatial search, state transfer and uniform sampling on a large class of graphs. Using the framework, we can achieve exact uniform sampling over all vertices and perfect state transfer between any two vertices, provided that eigenvalues of Laplacian matrix of the graph are all integers. Furthermore, if the graph is vertex-transitive as well, then we can achieve deterministic quantum spatial search that finds a marked vertex with certainty. In contrast, existing quantum search algorithms generally has a certain probability of failure. Even if the graph is not vertex-transitive, such as the complete bipartite graph, we can still adjust the algorithmic framework to obtain deterministic spatial search, which thus shows the flexibility of it. Besides unifying and improving plenty of previous results, our work provides new results on more graphs. The approach is easy to use since it has a succinct formalism that depends only on the depth of the Laplacian eigenvalue set of the graph, and may shed light on the solution of more problems related to graphs.

With wide application of Artificial Intelligence (AI), it has become particularly important to make decisions of AI systems explainable and transparent. In this paper, we proposed a new Explainable Artificial Intelligence (XAI) method called ShapG (Explanations based on Shapley value for Graphs) for measuring feature importance. ShapG is a model-agnostic global explanation method. At the first stage, it defines an undirected graph based on the dataset, where nodes represent features and edges are added based on calculation of correlation coefficients between features. At the second stage, it calculates an approximated Shapley value by sampling the data taking into account this graph structure. The sampling approach of ShapG allows to calculate the importance of features efficiently, i.e. to reduce computational complexity. Comparison of ShapG with other existing XAI methods shows that it provides more accurate explanations for two examined datasets. We also compared other XAI methods developed based on cooperative game theory with ShapG in running time, and the results show that ShapG exhibits obvious advantages in its running time, which further proves efficiency of ShapG. In addition, extensive experiments demonstrate a wide range of applicability of the ShapG method for explaining complex models. We find ShapG an important tool in improving explainability and transparency of AI systems and believe it can be widely used in various fields.

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司