亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents Federated Learning with Adaptive Monitoring and Elimination (FLAME), a novel solution capable of detecting and mitigating concept drift in Federated Learning (FL) Internet of Things (IoT) environments. Concept drift poses significant challenges for FL models deployed in dynamic and real-world settings. FLAME leverages an FL architecture, considers a real-world FL pipeline, and proves capable of maintaining model performance and accuracy while addressing bandwidth and privacy constraints. Introducing various features and extensions on previous works, FLAME offers a robust solution to concept drift, significantly reducing computational load and communication overhead. Compared to well-known lightweight mitigation methods, FLAME demonstrates superior performance in maintaining high F1 scores and reducing resource utilisation in large-scale IoT deployments, making it a promising approach for real-world applications.

相關內容

Virtual reality (VR), while enhancing user experiences, introduces significant privacy risks. This paper reveals a novel vulnerability in VR systems that allows attackers to capture VR privacy through obstacles utilizing millimeter-wave (mmWave) signals without physical intrusion and virtual connection with the VR devices. We propose mmSpyVR, a novel attack on VR user's privacy via mmWave radar. The mmSpyVR framework encompasses two main parts: (i) A transfer learning-based feature extraction model to achieve VR feature extraction from mmWave signal. (ii) An attention-based VR privacy spying module to spy VR privacy information from the extracted feature. The mmSpyVR demonstrates the capability to extract critical VR privacy from the mmWave signals that have penetrated through obstacles. We evaluate mmSpyVR through IRB-approved user studies. Across 22 participants engaged in four experimental scenes utilizing VR devices from three different manufacturers, our system achieves an application recognition accuracy of 98.5\% and keystroke recognition accuracy of 92.6\%. This newly discovered vulnerability has implications across various domains, such as cybersecurity, privacy protection, and VR technology development. We also engage with VR manufacturer Meta to discuss and explore potential mitigation strategies. Data and code are publicly available for scrutiny and research at //github.com/luoyumei1-a/mmSpyVR/

In this work, we present MFTIQ, a novel dense long-term tracking model that advances the Multi-Flow Tracker (MFT) framework to address challenges in point-level visual tracking in video sequences. MFTIQ builds upon the flow-chaining concepts of MFT, integrating an Independent Quality (IQ) module that separates correspondence quality estimation from optical flow computations. This decoupling significantly enhances the accuracy and flexibility of the tracking process, allowing MFTIQ to maintain reliable trajectory predictions even in scenarios of prolonged occlusions and complex dynamics. Designed to be "plug-and-play", MFTIQ can be employed with any off-the-shelf optical flow method without the need for fine-tuning or architectural modifications. Experimental validations on the TAP-Vid Davis dataset show that MFTIQ with RoMa optical flow not only surpasses MFT but also performs comparably to state-of-the-art trackers while having substantially faster processing speed. Code and models available at //github.com/serycjon/MFTIQ .

This paper presents TE-NeXt, a novel and efficient architecture for Traversability Estimation (TE) from sparse LiDAR point clouds based on a residual convolution block. TE-NeXt block fuses notions of current trends such as attention mechanisms and 3D sparse convolutions. TE-NeXt aims to demonstrate high capacity for generalisation in a variety of urban and natural environments, using well-known and accessible datasets such as SemanticKITTI, Rellis-3D and SemanticUSL. Thus, the designed architecture ouperforms state-of-the-art methods in the problem of semantic segmentation, demonstrating better results in unstructured environments and maintaining high reliability and robustness in urbans environments, which leads to better abstraction. Implementation is available in a open repository to the scientific community with the aim of ensuring the reproducibility of results.

Human Mesh Recovery (HMR) from a single RGB image is a highly ambiguous problem, as an infinite set of 3D interpretations can explain the 2D observation equally well. Nevertheless, most HMR methods overlook this issue and make a single prediction without accounting for this ambiguity. A few approaches generate a distribution of human meshes, enabling the sampling of multiple predictions; however, none of them is competitive with the latest single-output model when making a single prediction. This work proposes a new approach based on masked generative modeling. By tokenizing the human pose and shape, we formulate the HMR task as generating a sequence of discrete tokens conditioned on an input image. We introduce MEGA, a MaskEd Generative Autoencoder trained to recover human meshes from images and partial human mesh token sequences. Given an image, our flexible generation scheme allows us to predict a single human mesh in deterministic mode or to generate multiple human meshes in stochastic mode. Experiments on in-the-wild benchmarks show that MEGA achieves state-of-the-art performance in deterministic and stochastic modes, outperforming single-output and multi-output approaches.

Recent advancements in 3D Gaussian Splatting (3DGS), which lead to high-quality novel view synthesis and accelerated rendering, have remarkably improved the quality of radiance field reconstruction. However, the extraction of mesh from a massive number of minute 3D Gaussian points remains great challenge due to the large volume of Gaussians and difficulty of representation of sharp signals caused by their inherent low-pass characteristics. To address this issue, we propose DyGASR, which utilizes generalized exponential function instead of traditional 3D Gaussian to decrease the number of particles and dynamically optimize the representation of the captured signal. In addition, it is observed that reconstructing mesh with Generalized Exponential Splatting(GES) without modifications frequently leads to failures since the generalized exponential distribution centroids may not precisely align with the scene surface. To overcome this, we adopt Sugar's approach and introduce Generalized Surface Regularization (GSR), which reduces the smallest scaling vector of each point cloud to zero and ensures normal alignment perpendicular to the surface, facilitating subsequent Poisson surface mesh reconstruction. Additionally, we propose a dynamic resolution adjustment strategy that utilizes a cosine schedule to gradually increase image resolution from low to high during the training stage, thus avoiding constant full resolution, which significantly boosts the reconstruction speed. Our approach surpasses existing 3DGS-based mesh reconstruction methods, as evidenced by extensive evaluations on various scene datasets, demonstrating a 25\% increase in speed, and a 30\% reduction in memory usage.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司