Due to the robustness in sensing, radar has been highlighted, overcoming harsh weather conditions such as fog and heavy snow. In this paper, we present a novel radar-only place recognition that measures the similarity score by utilizing Radon-transformed sinogram images and cross-correlation in frequency domain. Doing so achieves rigid transform invariance during place recognition, while ignoring the effects of radar multipath and ring noises. In addition, we compute the radar similarity distance using mutable threshold to mitigate variability of the similarity score, and reduce the time complexity of processing a copious radar data with hierarchical retrieval. We demonstrate the matching performance for both intra-session loop-closure detection and global place recognition using a publicly available imaging radar datasets. We verify reliable performance compared to existing stable radar place recognition method. Furthermore, codes for the proposed imaging radar place recognition is released for community.
Unmanned aerial vehicles (UAVs) are frequently used for inspecting power lines and capturing high-resolution aerial images. However, detecting power lines in aerial images is difficult,as the foreground data(i.e, power lines) is small and the background information is abundant.To tackle this problem, we introduce DUFormer, a semantic segmentation algorithm explicitly designed to detect power lines in aerial images. We presuppose that it is advantageous to train an efficient Transformer model with sufficient feature extraction using a convolutional neural network(CNN) with a strong inductive bias.With this goal in mind, we introduce a heavy token encoder that performs overlapping feature remodeling and tokenization. The encoder comprises a pyramid CNN feature extraction module and a power line feature enhancement module.After successful local feature extraction for power lines, feature fusion is conducted.Then,the Transformer block is used for global modeling. The final segmentation result is achieved by amalgamating local and global features in the decode head.Moreover, we demonstrate the importance of the joint multi-weight loss function in power line segmentation. Our experimental results show that our proposed method outperforms all state-of-the-art methods in power line segmentation on the publicly accessible TTPLA dataset.
Robust 3D object detection in extreme weather and illumination conditions is a challenging task. While radars and thermal cameras are known for their resilience to these conditions, few studies have been conducted on radar-thermal fusion due to the lack of corresponding datasets. To address this gap, we first present a new multi-modal dataset called ThermRad, which includes a 3D LiDAR, a 4D radar, an RGB camera and a thermal camera. This dataset is unique because it includes data from all four sensors in extreme weather conditions, providing a valuable resource for future research in this area. To validate the robustness of 4D radars and thermal cameras for 3D object detection in challenging weather conditions, we propose a new multi-modal fusion method called RTDF-RCNN, which leverages the complementary strengths of 4D radars and thermal cameras to boost object detection performance. To further prove the effectiveness of our proposed framework, we re-implement state-of-the-art (SOTA) 3D detectors on our dataset as benchmarks for evaluation. Our method achieves significant enhancements in detecting cars, pedestrians, and cyclists, with improvements of over 7.98%, 24.27%, and 27.15%, respectively, while achieving comparable results to LiDAR-based approaches. Our contributions in both the ThermRad dataset and the new multi-modal fusion method provide a new approach to robust 3D object detection in adverse weather and illumination conditions. The ThermRad dataset will be released.
This study introduced the use of Graph Neural Network (GNN) for predicting the weather and weekday of a day in London, from the dataset of Santander Cycles bike-sharing system as a graph classification task. The proposed GNN models newly introduced (i) a concatenation operator of graph features with trained node embeddings and (ii) a graph coarsening operator based on geographical contiguity, namely "Spatial Graph Coarsening". With the node features of land-use characteristics and number of households around the bike stations and graph features of temperatures in the city, our proposed models outperformed the baseline model in cross-entropy loss and accuracy of the validation dataset.
Most of the existing point-to-mesh distance query solvers, such as Proximity Query Package (PQP), Embree and Fast Closest Point Query (FCPW), are based on bounding volume hierarchy (BVH). The hierarchical organizational structure enables one to eliminate the vast majority of triangles that do not help find the closest point. In this paper, we develop a totally different algorithmic paradigm, named P2M, to speed up point-to-mesh distance queries. Our original intention is to precompute a KD tree (KDT) of mesh vertices to approximately encode the geometry of a mesh surface containing vertices, edges and faces. However, it is very likely that the closest primitive to the query point is an edge e (resp., a face f), but the KDT reports a mesh vertex \u{psion} instead. We call \u{psion} an interceptor of e (resp., f). The main contribution of this paper is to invent a simple yet effective interception inspection rule and an efficient flooding interception inspection algorithm for quickly finding out all the interception pairs. Once the KDT and the interception table are precomputed, the query stage proceeds by first searching the KDT and then looking up the interception table to retrieve the closest geometric primitive. Statistics show that our query algorithm runs many times faster than the state-of-the-art solvers.
Traffic accident detection and anticipation is an obstinate road safety problem and painstaking efforts have been devoted. With the rapid growth of video data, Vision-based Traffic Accident Detection and Anticipation (named Vision-TAD and Vision-TAA) become the last one-mile problem for safe driving and surveillance safety. However, the long-tailed, unbalanced, highly dynamic, complex, and uncertain properties of traffic accidents form the Out-of-Distribution (OOD) feature for Vision-TAD and Vision-TAA. Current AI development may focus on these OOD but important problems. What has been done for Vision-TAD and Vision-TAA? What direction we should focus on in the future for this problem? A comprehensive survey is important. We present the first survey on Vision-TAD in the deep learning era and the first-ever survey for Vision-TAA. The pros and cons of each research prototype are discussed in detail during the investigation. In addition, we also provide a critical review of 31 publicly available benchmarks and related evaluation metrics. Through this survey, we want to spawn new insights and open possible trends for Vision-TAD and Vision-TAA tasks.
Synthetic aperture radar (SAR) imaging technology is commonly used to provide 24-hour all-weather earth observation. However, it still has some drawbacks in SAR target classification, especially in fine-grained classification of aircraft: aircrafts in SAR images have large intra-class diversity and inter-class similarity; the number of effective samples is insufficient and it's hard to annotate. To address these issues, this article proposes a novel multi-modal self-supervised network (MS-Net) for fine-grained classification of aircraft. Firstly, in order to entirely exploit the potential of multi-modal information, a two-sided path feature extraction network (TSFE-N) is constructed to enhance the image feature of the target and obtain the domain knowledge feature of text mode. Secondly, a contrastive self-supervised learning (CSSL) framework is employed to effectively learn useful label-independent feature from unbalanced data, a similarity per-ception loss (SPloss) is proposed to avoid network overfitting. Finally, TSFE-N is used as the encoder of CSSL to obtain the classification results. Through a large number of experiments, our MS-Net can effectively reduce the difficulty of classifying similar types of aircrafts. In the case of no label, the proposed algorithm achieves an accuracy of 88.46% for 17 types of air-craft classification task, which has pioneering significance in the field of fine-grained classification of aircraft in SAR images.
Large Language Models (LLMs) have gathered significant attention due to their impressive performance on a variety of tasks. ChatGPT, developed by OpenAI, is a recent addition to the family of language models and is being called a disruptive technology by a few, owing to its human-like text-generation capabilities. Although, many anecdotal examples across the internet have evaluated ChatGPT's strength and weakness, only a few systematic research studies exist. To contribute to the body of literature of systematic research on ChatGPT, we evaluate the performance of ChatGPT on Abstractive Summarization by the means of automated metrics and blinded human reviewers. We also build automatic text classifiers to detect ChatGPT generated summaries. We found that while text classification algorithms can distinguish between real and generated summaries, humans are unable to distinguish between real summaries and those produced by ChatGPT.
The quality of text-to-image generation is continuously improving, yet the boundaries of its applicability are still unclear. In particular, refinement of the text input with the objective of achieving better results - commonly called prompt engineering - so far seems to have not been geared towards work with pre-existing texts. We investigate whether text-to-image generation and prompt engineering could be used to generate basic illustrations of popular fairytales. Using Midjourney v4, we engage in action research with a dual aim: to attempt to generate 5 believable illustrations for each of 5 popular fairytales, and to define a prompt engineering process that starts from a pre-existing text and arrives at an illustration of it. We arrive at a tentative 4-stage process: i) initial prompt, ii) composition adjustment, iii) style refinement, and iv) variation selection. We also discuss three reasons why the generation model struggles with certain illustrations: difficulties with counts, bias from stereotypical configurations and inability to depict overly fantastic situations. Our findings are not limited to the specific generation model and are intended to be generalisable to future ones.
Recent years have witnessed the resurgence of knowledge engineering which is featured by the fast growth of knowledge graphs. However, most of existing knowledge graphs are represented with pure symbols, which hurts the machine's capability to understand the real world. The multi-modalization of knowledge graphs is an inevitable key step towards the realization of human-level machine intelligence. The results of this endeavor are Multi-modal Knowledge Graphs (MMKGs). In this survey on MMKGs constructed by texts and images, we first give definitions of MMKGs, followed with the preliminaries on multi-modal tasks and techniques. We then systematically review the challenges, progresses and opportunities on the construction and application of MMKGs respectively, with detailed analyses of the strength and weakness of different solutions. We finalize this survey with open research problems relevant to MMKGs.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.