A new kind of spline geometric method approach is presented. Its main ingredient is the use of well established spline spaces forming a discrete de Rham complex to construct a primal sequence $\{X^k_h\}^n_{k=0}$, starting from splines of degree $p$, and a dual sequence $\{\tilde{X}^k_h\}_{k=0}^n$, starting from splines of degree $p-1$. By imposing homogeneous boundary conditions to the spaces of the primal sequence, the two sequences can be isomorphically mapped into one another. Within this setup, many familiar second order partial differential equations can be finally accommodated by explicitly constructing appropriate discrete versions of constitutive relations, called Hodge--star operators. Several alternatives based on both global and local projection operators between spline spaces will be proposed. The appeal of the approach with respect to similar published methods is twofold: firstly, it exhibits high order convergence. Secondly, it does not rely on the geometric realization of any (topologically) dual mesh. Several numerical examples in various space dimensions will be employed to validate the central ideas of the proposed approach and compare its features with the standard Galerkin approach in Isogeometric Analysis.
Neural Stochastic Differential Equations (NSDEs) model the drift and diffusion functions of a stochastic process as neural networks. While NSDEs are known to make accurate predictions, their uncertainty quantification properties have been remained unexplored so far. We report the empirical finding that obtaining well-calibrated uncertainty estimations from NSDEs is computationally prohibitive. As a remedy, we develop a computationally affordable deterministic scheme which accurately approximates the transition kernel, when dynamics is governed by a NSDE. Our method introduces a bidimensional moment matching algorithm: vertical along the neural net layers and horizontal along the time direction, which benefits from an original combination of effective approximations. Our deterministic approximation of the transition kernel is applicable to both training and prediction. We observe in multiple experiments that the uncertainty calibration quality of our method can be matched by Monte Carlo sampling only after introducing high computational cost. Thanks to the numerical stability of deterministic training, our method also improves prediction accuracy.
This paper investigates fundamental limits of exact recovery in the general d-uniform hypergraph stochastic block model (d-HSBM), wherein n nodes are partitioned into k disjoint communities with relative sizes (p1,..., pk). Each subset of nodes with cardinality d is generated independently as an order-d hyperedge with a certain probability that depends on the ground-truth communities that the d nodes belong to. The goal is to exactly recover the k hidden communities based on the observed hypergraph. We show that there exists a sharp threshold such that exact recovery is achievable above the threshold and impossible below the threshold (apart from a small regime of parameters that will be specified precisely). This threshold is represented in terms of a quantity which we term as the generalized Chernoff-Hellinger divergence between communities. Our result for this general model recovers prior results for the standard SBM and d-HSBM with two symmetric communities as special cases. En route to proving our achievability results, we develop a polynomial-time two-stage algorithm that meets the threshold. The first stage adopts a certain hypergraph spectral clustering method to obtain a coarse estimate of communities, and the second stage refines each node individually via local refinement steps to ensure exact recovery.
Deep learning models are state-of-the-art in compressive spectral imaging (CSI) recovery. These methods use a deep neural network (DNN) as an image generator to learn non-linear mapping from compressed measurements to the spectral image. For instance, the deep spectral prior approach uses a convolutional autoencoder network (CAE) in the optimization algorithm to recover the spectral image by using a non-linear representation. However, the CAE training is detached from the recovery problem, which does not guarantee optimal representation of the spectral images for the CSI problem. This work proposes a joint non-linear representation and recovery network (JR2net), linking the representation and recovery task into a single optimization problem. JR2net consists of an optimization-inspired network following an ADMM formulation that learns a non-linear low-dimensional representation and simultaneously performs the spectral image recovery, trained via the end-to-end approach. Experimental results show the superiority of the proposed method with improvements up to 2.57 dB in PSNR and performance around 2000 times faster than state-of-the-art methods.
Acoustic wave propagation through a homogeneous material embedded in an unbounded medium can be formulated as a boundary integral equation and accurately solved with the boundary element method. The computational efficiency deteriorates at high frequencies due to the increase in mesh size with a fixed number of elements per wavelength and ill-conditioning of the linear system due to high material contrasts. This study presents the design of boundary element methods feasible for nonconforming surface meshes at the material interface. The nonconforming algorithm allows for independent grid generation, which improves flexibility and reduces the degrees of freedom. It works for different boundary integral formulations for Helmholtz transmission problems, operator preconditioning, and coupling with finite element solvers. The extensive numerical benchmarks at canonical configurations and an acoustic foam model confirm the significant improvements in computational efficiency when employing the nonconforming grid coupling in the boundary element method.
In this paper, we study the spectral properties of re-parameterized light field. Following previous studies of the light field spectrum, which notably provided sampling guidelines, we focus on the two plane parameterization of the light field. However, we introduce additional flexibility by allowing the image plane to be tilted and not only parallel. A formal theoretical analysis is first presented, which shows that more flexible sampling guidelines (i.e. wider camera baselines) can be used to sample the light field when adapting the image plane orientation to the scene geometry. We then present our simulations and results to support these theoretical findings. While the work introduced in this paper is mostly theoretical, we believe these new findings open exciting avenues for more practical application of light fields, such as view synthesis or compact representation.
Graph pooling is a crucial operation for encoding hierarchical structures within graphs. Most existing graph pooling approaches formulate the problem as a node clustering task which effectively captures the graph topology. Conventional methods ask users to specify an appropriate number of clusters as a hyperparameter, then assume that all input graphs share the same number of clusters. In inductive settings where the number of clusters can vary, however, the model should be able to represent this variation in its pooling layers in order to learn suitable clusters. Thus we propose GMPool, a novel differentiable graph pooling architecture that automatically determines the appropriate number of clusters based on the input data. The main intuition involves a grouping matrix defined as a quadratic form of the pooling operator, which induces use of binary classification probabilities of pairwise combinations of nodes. GMPool obtains the pooling operator by first computing the grouping matrix, then decomposing it. Extensive evaluations on molecular property prediction tasks demonstrate that our method outperforms conventional methods.
The Landau-Lifshitz-Gilbert (LLG) equation is a widely used model for fast magnetization dynamics in ferromagnetic materials. Recently, the inertial LLG equation, which contains an inertial term, has been proposed to capture the ultra-fast magnetization dynamics at the sub-picosecond timescale. Mathematically, this generalized model contains the first temporal derivative and a newly introduced second temporal derivative of magnetization. Consequently, it produces extra difficulties in numerical analysis due to the mixed hyperbolic-parabolic type of this equation with degeneracy. In this work, we propose an implicit finite difference scheme based on the central difference in both time and space. A fixed point iteration method is applied to solve the implicit nonlinear system. With the help of a second order accurate constructed solution, we provide a convergence analysis in $H^1$ for this numerical scheme, in the $\ell^\infty (0, T; H_h^1)$ norm. It is shown that the proposed method is second order accurate in both time and space, with unconditional stability and a natural preservation of the magnetization length. In the hyperbolic regime, significant damping wave behaviors of magnetization at a shorter timescale are observed through numerical simulations.
Statistical shape modeling (SSM) is a valuable and powerful tool to generate a detailed representation of complex anatomy that enables quantitative analysis and the comparison of shapes and their variations. SSM applies mathematics, statistics, and computing to parse the shape into a quantitative representation (such as correspondence points or landmarks) that will help answer various questions about the anatomical variations across the population. Complex anatomical structures have many diverse parts with varying interactions or intricate architecture. For example, the heart is four-chambered anatomy with several shared boundaries between chambers. Coordinated and efficient contraction of the chambers of the heart is necessary to adequately perfuse end organs throughout the body. Subtle shape changes within these shared boundaries of the heart can indicate potential pathological changes that lead to uncoordinated contraction and poor end-organ perfusion. Early detection and robust quantification could provide insight into ideal treatment techniques and intervention timing. However, existing SSM approaches fall short of explicitly modeling the statistics of shared boundaries. This paper presents a general and flexible data-driven approach for building statistical shape models of multi-organ anatomies with shared boundaries that capture morphological and alignment changes of individual anatomies and their shared boundary surfaces throughout the population. We demonstrate the effectiveness of the proposed methods using a biventricular heart dataset by developing shape models that consistently parameterize the cardiac biventricular structure and the interventricular septum (shared boundary surface) across the population data.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.