亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

By virtue of being prevalently written in natural language (NL), requirements are prone to various defects, e.g., inconsistency and incompleteness. As such, requirements are frequently subject to quality assurance processes. These processes, when carried out entirely manually, are tedious and may further overlook important quality issues due to time and budget pressures. In this paper, we propose QAssist -- a question-answering (QA) approach that provides automated assistance to stakeholders, including requirements engineers, during the analysis of NL requirements. Posing a question and getting an instant answer is beneficial in various quality-assurance scenarios, e.g., incompleteness detection. Answering requirements-related questions automatically is challenging since the scope of the search for answers can go beyond the given requirements specification. To that end, QAssist provides support for mining external domain-knowledge resources. Our work is one of the first initiatives to bring together QA and external domain knowledge for addressing requirements engineering challenges. We evaluate QAssist on a dataset covering three application domains and containing a total of 387 question-answer pairs. We experiment with state-of-the-art QA methods, based primarily on recent large-scale language models. In our empirical study, QAssist localizes the answer to a question to three passages within the requirements specification and within the external domain-knowledge resource with an average recall of 90.1% and 96.5%, respectively. QAssist extracts the actual answer to the posed question with an average accuracy of 84.2%. Keywords: Natural-language Requirements, Question Answering (QA), Language Models, Natural Language Processing (NLP), Natural Language Generation (NLG), BERT, T5.

相關內容

自動問答(Question Answering, QA)是指利用計算機自動回答用戶所提出的問題以滿足用戶知識需求的任務。不同于現有搜索引擎,問答系統是信息服務的一種高級形式,系統返回用戶的不再是基于關鍵詞匹配排序的文檔列表,而是精準的自然語言答案。近年來,隨著人工智能的飛速發展,自動問答已經成為倍受關注且發展前景廣泛的研究方向。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

This paper introduces RiskCards, a framework for structured assessment and documentation of risks associated with an application of language models. As with all language, text generated by language models can be harmful, or used to bring about harm. Automating language generation adds both an element of scale and also more subtle or emergent undesirable tendencies to the generated text. Prior work establishes a wide variety of language model harms to many different actors: existing taxonomies identify categories of harms posed by language models; benchmarks establish automated tests of these harms; and documentation standards for models, tasks and datasets encourage transparent reporting. However, there is no risk-centric framework for documenting the complexity of a landscape in which some risks are shared across models and contexts, while others are specific, and where certain conditions may be required for risks to manifest as harms. RiskCards address this methodological gap by providing a generic framework for assessing the use of a given language model in a given scenario. Each RiskCard makes clear the routes for the risk to manifest harm, their placement in harm taxonomies, and example prompt-output pairs. While RiskCards are designed to be open-source, dynamic and participatory, we present a "starter set" of RiskCards taken from a broad literature survey, each of which details a concrete risk presentation. Language model RiskCards initiate a community knowledge base which permits the mapping of risks and harms to a specific model or its application scenario, ultimately contributing to a better, safer and shared understanding of the risk landscape.

An increasing number of monitoring systems have been developed in smart cities to ensure that the real-time operations of a city satisfy safety and performance requirements. However, many existing city requirements are written in English with missing, inaccurate, or ambiguous information. There is a high demand for assisting city policymakers in converting human-specified requirements to machine-understandable formal specifications for monitoring systems. To tackle this limitation, we build CitySpec, the first intelligent assistant system for requirement specification in smart cities. To create CitySpec, we first collect over 1,500 real-world city requirements across different domains (e.g., transportation and energy) from over 100 cities and extract city-specific knowledge to generate a dataset of city vocabulary with 3,061 words. We also build a translation model and enhance it through requirement synthesis and develop a novel online learning framework with shielded validation. The evaluation results on real-world city requirements show that CitySpec increases the sentence-level accuracy of requirement specification from 59.02% to 86.64%, and has strong adaptability to a new city and a new domain (e.g., the F1 score for requirements in Seattle increases from 77.6% to 93.75% with online learning). After the enhancement from the shield function, CitySpec is now immune to most known textual adversarial inputs (e.g., the attack success rate of DeepWordBug after the shield function is reduced to 0% from 82.73%). We test the CitySpec with 18 participants from different domains. CitySpec shows its strong usability and adaptability to different domains, and also its robustness to malicious inputs.

The proliferation of automated conversational systems such as chatbots, spoken-dialogue systems, and smart speakers, has significantly impacted modern digital life. However, these systems are primarily designed to provide answers to well-defined questions rather than to support users in exploring complex, ill-defined questions. In this paper, we aim to push the boundaries of conversational systems by examining the types of nebulous, open-ended questions that can best be answered through conversation. We first sampled 500 questions from one million open-ended requests posted on AskReddit, and then recruited online crowd workers to answer eight inquiries about these questions. We also performed open coding to categorize the questions into 27 different domains. We found that the issues people believe require conversation to resolve satisfactorily are highly social and personal. Our work provides insights into how future research could be geared to align with users' needs.

Medical Visual Question Answering (VQA) is a combination of medical artificial intelligence and popular VQA challenges. Given a medical image and a clinically relevant question in natural language, the medical VQA system is expected to predict a plausible and convincing answer. Although the general-domain VQA has been extensively studied, the medical VQA still needs specific investigation and exploration due to its task features. In the first part of this survey, we cover and discuss the publicly available medical VQA datasets up to date about the data source, data quantity, and task feature. In the second part, we review the approaches used in medical VQA tasks. In the last part, we analyze some medical-specific challenges for the field and discuss future research directions.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.

With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

Verifiability is one of the core editing principles in Wikipedia, where editors are encouraged to provide citations for the added statements. Statements can be any arbitrary piece of text, ranging from a sentence up to a paragraph. However, in many cases, citations are either outdated, missing, or link to non-existing references (e.g. dead URL, moved content etc.). In total, 20\% of the cases such citations refer to news articles and represent the second most cited source. Even in cases where citations are provided, there are no explicit indicators for the span of a citation for a given piece of text. In addition to issues related with the verifiability principle, many Wikipedia entity pages are incomplete, with relevant information that is already available in online news sources missing. Even for the already existing citations, there is often a delay between the news publication time and the reference time. In this thesis, we address the aforementioned issues and propose automated approaches that enforce the verifiability principle in Wikipedia, and suggest relevant and missing news references for further enriching Wikipedia entity pages.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司