While multimodal foundation models can now natively work with data beyond text, they remain underutilized in analyzing the considerable amounts of multi-dimensional time-series data in fields like healthcare, finance, and social sciences, representing a missed opportunity for richer, data-driven insights. This paper proposes a simple but effective method that leverages the existing vision encoders of these models to "see" time-series data via plots, avoiding the need for additional, potentially costly, model training. Our empirical evaluations show that this approach outperforms providing the raw time-series data as text, with the additional benefit that visual time-series representations demonstrate up to a 90% reduction in model API costs. We validate our hypothesis through synthetic data tasks of increasing complexity, progressing from simple functional form identification on clean data, to extracting trends from noisy scatter plots. To demonstrate generalizability from synthetic tasks with clear reasoning steps to more complex, real-world scenarios, we apply our approach to consumer health tasks - specifically fall detection, activity recognition, and readiness assessment - which involve heterogeneous, noisy data and multi-step reasoning. The overall success in plot performance over text performance (up to an 120% performance increase on zero-shot synthetic tasks, and up to 150% performance increase on real-world tasks), across both GPT and Gemini model families, highlights our approach's potential for making the best use of the native capabilities of foundation models.
What mechanisms underlie linguistic generalization in large language models (LLMs)? This question has attracted considerable attention, with most studies analyzing the extent to which the language skills of LLMs resemble rules. As of yet, it is not known whether linguistic generalization in LLMs could equally well be explained as the result of analogical processes, which can be formalized as similarity operations on stored exemplars. A key shortcoming of prior research is its focus on linguistic phenomena with a high degree of regularity, for which rule-based and analogical approaches make the same predictions. Here, we instead examine derivational morphology, specifically English adjective nominalization, which displays notable variability. We introduce a new method for investigating linguistic generalization in LLMs: focusing on GPT-J, we fit cognitive models that instantiate rule-based and analogical learning to the LLM training data and compare their predictions on a set of nonce adjectives with those of the LLM, allowing us to draw direct conclusions regarding underlying mechanisms. As expected, rule-based and analogical models explain the predictions of GPT-J equally well for adjectives with regular nominalization patterns. However, for adjectives with variable nominalization patterns, the analogical model provides a much better match. Furthermore, GPT-J's behavior is sensitive to the individual word frequencies, even for regular forms, a behavior that is consistent with an analogical account of regular forms but not a rule-based one. These findings refute the hypothesis that GPT-J's linguistic generalization on adjective nominalization involves rules, suggesting similarity operations on stored exemplars as the underlying mechanism. Overall, our study suggests that analogical processes play a bigger role in the linguistic generalization of LLMs than previously thought.
Large language models have driven significant progress in natural language processing, but their deployment requires substantial compute and memory resources. As models scale, compression techniques become essential for balancing model quality with computational efficiency. Structured pruning, which removes less critical components of the model, is a promising strategy for reducing complexity. However, one-shot pruning often results in significant quality degradation, particularly in tasks requiring multi-step reasoning. To recover lost quality, supervised fine-tuning (SFT) is commonly applied, but it can lead to catastrophic forgetting by shifting the model's learned data distribution. Therefore, addressing the degradation from both pruning and SFT is essential to preserve the original model's quality. In this work, we utilize self-data distilled fine-tuning to address these challenges. Our approach leverages the original, unpruned model to generate a distilled dataset that preserves semantic richness and mitigates catastrophic forgetting by maintaining alignment with the base model's knowledge. Empirically, we demonstrate that self-data distillation consistently outperforms standard SFT, improving average accuracy by up to 8% on the HuggingFace OpenLLM Leaderboard v1. Specifically, when pruning six decoder blocks on Llama3.1-8B Instruct (i.e., 32 to 26 layers, reducing the model size from 8.03B to 6.72B parameters), our method retains 91.2% of the original model's accuracy compared to 81.7% with SFT, while reducing real-world FLOPs by 16.3%. Furthermore, combining self-data distilled models through model merging yields enhanced quality retention. Additionally, leveraging these pruned models in speculative decoding increases token acceptance rates, thereby improving inference efficiency in applied settings.
The generation of synthetic data is a state-of-the-art approach to leverage when access to real data is limited or privacy regulations limit the usability of sensitive data. A fair amount of research has been conducted on synthetic data generation for single-tabular datasets, but only a limited amount of research has been conducted on multi-tabular datasets with complex table relationships. In this paper we propose the algorithm HCTGAN to synthesize multi-tabular data from complex multi-tabular datasets. We compare our results to the probabilistic model HMA1. Our findings show that our proposed algorithm can more efficiently sample large amounts of synthetic data for deep and complex multi-tabular datasets, whilst achieving adequate data quality and always guaranteeing referential integrity. We conclude that the HCTGAN algorithm is suitable for generating large amounts of synthetic data efficiently for deep multi-tabular datasets with complex relationships. We additionally suggest that the HMA1 model should be used on smaller datasets when emphasis is on data quality.
By leveraging the principles of quantum mechanics, QML opens doors to novel approaches in machine learning and offers potential speedup. However, machine learning models are well-documented to be vulnerable to malicious manipulations, and this susceptibility extends to the models of QML. This situation necessitates a thorough understanding of QML's resilience against adversarial attacks, particularly in an era where quantum computing capabilities are expanding. In this regard, this paper examines model-independent bounds on adversarial performance for QML. To the best of our knowledge, we introduce the first computation of an approximate lower bound for adversarial error when evaluating model resilience against sophisticated quantum-based adversarial attacks. Experimental results are compared to the computed bound, demonstrating the potential of QML models to achieve high robustness. In the best case, the experimental error is only 10% above the estimated bound, offering evidence of the inherent robustness of quantum models. This work not only advances our theoretical understanding of quantum model resilience but also provides a precise reference bound for the future development of robust QML algorithms.
We present an empirical study investigating how specific properties of preference datasets, such as mixed-quality or noisy data, affect the performance of Preference Optimization (PO) algorithms. Our experiments, conducted in MuJoCo environments, reveal several scenarios where state-of-the-art PO methods experience significant drops in performance. To address this issue, we introduce a novel PO framework based on mirror descent, which can recover existing methods like Direct Preference Optimization (DPO) and Odds-Ratio Preference Optimization (ORPO) for specific choices of the mirror map. Within this framework, we employ evolutionary strategies to discover new loss functions capable of handling the identified problematic scenarios. These new loss functions lead to significant performance improvements over DPO and ORPO across several tasks. Additionally, we demonstrate the generalization capability of our approach by applying the discovered loss functions to fine-tuning large language models using mixed-quality data, where they outperform ORPO.
This study investigates the performance of a binarized neuromorphic network leveraging polariton dyads, optically excited pairs of interfering polariton condensates within a microcavity to function as binary logic gate neurons. Employing numerical simulations, we explore various neuron configurations, both linear (NAND, NOR) and nonlinear (XNOR), to assess their effectiveness in image classification tasks. We demonstrate that structural nonlinearity, derived from the network's layout, plays a crucial role in facilitating complex computational tasks, effectively reducing the reliance on the inherent nonlinearity of individual neurons. Our findings suggest that the network's configuration and the interaction among its elements can emulate the benefits of nonlinearity, thus potentially simplifying the design and manufacturing of neuromorphic systems and enhancing their scalability. This shift in focus from individual neuron properties to network architecture could lead to significant advancements in the efficiency and applicability of neuromorphic computing.
We explore the capability of four open-sourcelarge language models (LLMs) in argumentation mining (AM). We conduct experiments on three different corpora; persuasive essays(PE), argumentative microtexts (AMT) Part 1 and Part 2, based on two argumentation mining sub-tasks: (i) argumentative discourse units classifications (ADUC), and (ii) argumentative relation classification (ARC). This work aims to assess the argumentation capability of open-source LLMs, including Mistral 7B, Mixtral8x7B, LlamA2 7B and LlamA3 8B in both, zero-shot and few-shot scenarios. Our analysis contributes to further assessing computational argumentation with open-source LLMs in future research efforts.
This research presents FDASynthesis, a novel algorithm designed to generate synthetic GPS trajectory data while preserving privacy. After pre-processing the input GPS data, human mobility traces are modeled as multidimensional curves using Functional Data Analysis (FDA). Then, the synthesis process identifies the K-nearest trajectories and averages their Square-Root Velocity Functions (SRVFs) to generate synthetic data. This results in synthetic trajectories that maintain the utility of the original data while ensuring privacy. Although applied for human mobility research, FDASynthesis is highly adaptable to different types of functional data, offering a scalable solution in various application domains.
Developing robust automatic speech recognition (ASR) systems for Arabic, a language characterized by its rich dialectal diversity and often considered a low-resource language in speech technology, demands effective strategies to manage its complexity. This study explores three critical factors influencing ASR performance: the role of dialectal coverage in pre-training, the effectiveness of dialect-specific fine-tuning compared to a multi-dialectal approach, and the ability to generalize to unseen dialects. Through extensive experiments across different dialect combinations, our findings offer key insights towards advancing the development of ASR systems for pluricentric languages like Arabic.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.