We address the problem of data augmentation for video action recognition. Standard augmentation strategies in video are hand-designed and sample the space of possible augmented data points either at random, without knowing which augmented points will be better, or through heuristics. We propose to learn what makes a good video for action recognition and select only high-quality samples for augmentation. In particular, we choose video compositing of a foreground and a background video as the data augmentation process, which results in diverse and realistic new samples. We learn which pairs of videos to augment without having to actually composite them. This reduces the space of possible augmentations, which has two advantages: it saves computational cost and increases the accuracy of the final trained classifier, as the augmented pairs are of higher quality than average. We present experimental results on the entire spectrum of training settings: few-shot, semi-supervised and fully supervised. We observe consistent improvements across all of them over prior work and baselines on Kinetics, UCF101, HMDB51, and achieve a new state-of-the-art on settings with limited data. We see improvements of up to 8.6% in the semi-supervised setting.
Recently, vision transformers started to show impressive results which outperform large convolution based models significantly. However, in the area of small models for mobile or resource constrained devices, ConvNet still has its own advantages in both performance and model complexity. We propose ParC-Net, a pure ConvNet based backbone model that further strengthens these advantages by fusing the merits of vision transformers into ConvNets. Specifically, we propose position aware circular convolution (ParC), a light-weight convolution op which boasts a global receptive field while producing location sensitive features as in local convolutions. We combine the ParCs and squeeze-exictation ops to form a meta-former like model block, which further has the attention mechanism like transformers. The aforementioned block can be used in plug-and-play manner to replace relevant blocks in ConvNets or transformers. Experiment results show that the proposed ParC-Net achieves better performance than popular light-weight ConvNets and vision transformer based models in common vision tasks and datasets, while having fewer parameters and faster inference speed. For classification on ImageNet-1k, ParC-Net achieves 78.6% top-1 accuracy with about 5.0 million parameters, saving 11% parameters and 13% computational cost but gaining 0.2% higher accuracy and 23% faster inference speed (on ARM based Rockchip RK3288) compared with MobileViT, and uses only 0.5 times parameters but gaining 2.7% accuracy compared with DeIT. On MS-COCO object detection and PASCAL VOC segmentation tasks, ParC-Net also shows better performance. Source code is available at //github.com/hkzhang91/ParC-Net
Labeling a large set of data is expensive. Active learning aims to tackle this problem by asking to annotate only the most informative data from the unlabeled set. We propose a novel active learning approach that utilizes self-supervised pretext tasks and a unique data sampler to select data that are both difficult and representative. We discover that the loss of a simple self-supervised pretext task, such as rotation prediction, is closely correlated to the downstream task loss. Before the active learning iterations, the pretext task learner is trained on the unlabeled set, and the unlabeled data are sorted and split into batches by their pretext task losses. In each active learning iteration, the main task model is used to sample the most uncertain data in a batch to be annotated. We evaluate our method on various image classification and segmentation benchmarks and achieve compelling performances on CIFAR10, Caltech-101, ImageNet, and Cityscapes. We further show that our method performs well on imbalanced datasets, and can be an effective solution to the cold-start problem where active learning performance is affected by the randomly sampled initial labeled set.
Practical real world datasets with plentiful categories introduce new challenges for unsupervised domain adaptation like small inter-class discriminability, that existing approaches relying on domain invariance alone cannot handle sufficiently well. In this work we propose MemSAC, which exploits sample level similarity across source and target domains to achieve discriminative transfer, along with architectures that scale to a large number of categories. For this purpose, we first introduce a memory augmented approach to efficiently extract pairwise similarity relations between labeled source and unlabeled target domain instances, suited to handle an arbitrary number of classes. Next, we propose and theoretically justify a novel variant of the contrastive loss to promote local consistency among within-class cross domain samples while enforcing separation between classes, thus preserving discriminative transfer from source to target. We validate the advantages of MemSAC with significant improvements over previous state-of-the-art on multiple challenging transfer tasks designed for large-scale adaptation, such as DomainNet with 345 classes and fine-grained adaptation on Caltech-UCSD birds dataset with 200 classes. We also provide in-depth analysis and insights into the effectiveness of MemSAC.
The availability of large labeled datasets is the key component for the success of deep learning. However, annotating labels on large datasets is generally time-consuming and expensive. Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling. Diversity-based sampling algorithms are known as integral components of representation-based approaches for active learning. In this paper, we introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting. Self-supervised representation learning is used to consider the diversity of samples in the initial dataset selection algorithm. Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings. By considering the consistency information with the diversity in the consistency-based embedding scheme, the proposed method could select more informative samples for labeling in the semi-supervised learning setting. Comparative experiments show that the proposed method achieves compelling results on CIFAR-10 and Caltech-101 datasets compared with previous active learning approaches by utilizing the diversity of unlabeled data.
Whilst computer vision models built using self-supervised approaches are now commonplace, some important questions remain. Do self-supervised models learn highly redundant channel features? What if a self-supervised network could dynamically select the important channels and get rid of the unnecessary ones? Currently, convnets pre-trained with self-supervision have obtained comparable performance on downstream tasks in comparison to their supervised counterparts in computer vision. However, there are drawbacks to self-supervised models including their large numbers of parameters, computationally expensive training strategies and a clear need for faster inference on downstream tasks. In this work, our goal is to address the latter by studying how a standard channel selection method developed for supervised learning can be applied to networks trained with self-supervision. We validate our findings on a range of target budgets $t_{d}$ for channel computation on image classification task across different datasets, specifically CIFAR-10, CIFAR-100, and ImageNet-100, obtaining comparable performance to that of the original network when selecting all channels but at a significant reduction in computation reported in terms of FLOPs.
Action understanding has evolved into the era of fine granularity, as most human behaviors in real life have only minor differences. To detect these fine-grained actions accurately in a label-efficient way, we tackle the problem of weakly-supervised fine-grained temporal action detection in videos for the first time. Without the careful design to capture subtle differences between fine-grained actions, previous weakly-supervised models for general action detection cannot perform well in the fine-grained setting. We propose to model actions as the combinations of reusable atomic actions which are automatically discovered from data through self-supervised clustering, in order to capture the commonality and individuality of fine-grained actions. The learnt atomic actions, represented by visual concepts, are further mapped to fine and coarse action labels leveraging the semantic label hierarchy. Our approach constructs a visual representation hierarchy of four levels: clip level, atomic action level, fine action class level and coarse action class level, with supervision at each level. Extensive experiments on two large-scale fine-grained video datasets, FineAction and FineGym, show the benefit of our proposed weakly-supervised model for fine-grained action detection, and it achieves state-of-the-art results.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.