亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics. Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities. Nevertheless, real-world situations often involve obstructed cameras, missed objects, or objects out of sight due to environmental factors, leading to incomplete or noisy trajectories. To overcome these limitations, we propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories. LTrajDiff utilizes sensor data from mobile phones to surmount out-of-sight constraints, albeit introducing new challenges such as modality fusion, noisy data, and the absence of spatial layout and object size information. We employ a denoising diffusion model to predict precise layout sequences from noisy mobile data using a coarse-to-fine diffusion strategy, incorporating the RMS, Siamese Masked Encoding Module, and MFM. Our model predicts layout sequences by implicitly inferring object size and projection status from a single reference timestamp or significantly obstructed sequences. Achieving SOTA results in randomly obstructed experiments and extremely short input experiments, our model illustrates the effectiveness of leveraging noisy mobile data. In summary, our approach offers a promising solution to the challenges faced by layout sequence and trajectory prediction models in real-world settings, paving the way for utilizing sensor data from mobile phones to accurately predict pedestrian bounding box trajectories. To the best of our knowledge, this is the first work that addresses severely obstructed and extremely short layout sequences by combining vision with noisy mobile modality, making it the pioneering work in the field of layout sequence trajectory prediction.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Attention · 估計/估計量 · Learning · 損失 ·
2023 年 11 月 24 日

Prioritized Experience Replay (PER) enables the model to learn more about relatively important samples by artificially changing their accessed frequencies. However, this non-uniform sampling method shifts the state-action distribution that is originally used to estimate Q-value functions, which brings about the estimation deviation. In this article, an novel off policy reinforcement learning training framework called Directly Attention Loss Adjusted Prioritized Experience Replay (DALAP) is proposed, which can directly quantify the changed extent of the shifted distribution through Parallel Self-Attention network, so as to accurately compensate the error. In addition, a Priority-Encouragement mechanism is designed simultaneously to optimize the sample screening criterion, and further improve the training efficiency. In order to verify the effectiveness and generality of DALAP, we integrate it with the value-function based, the policy-gradient based and multi-agent reinforcement learning algorithm, respectively. The multiple groups of comparative experiments show that DALAP has the significant advantages of both improving the convergence rate and reducing the training variance.

Snapshot compressive spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement. Existing state-of-the-art methods are mostly based on deep unfolding structures but have intrinsic performance bottlenecks: $i$) the ill-posed problem of dealing with heavily degraded measurement, and $ii$) the regression loss-based reconstruction models being prone to recover images with few details. In this paper, we introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to enhance the regression-based deep unfolding method. Furthermore, to overcome the large computational cost challenge in LDM, we propose a lightweight model to generate knowledge priors in deep unfolding denoiser, and integrate these priors to guide the reconstruction process for compensating high-quality spectral signal details. Numeric and visual comparisons on synthetic and real-world datasets illustrate the superiority of our proposed method in both reconstruction quality and computational efficiency. Code will be released.

Effective and rapid decision-making from randomized controlled trials (RCTs) requires unbiased and precise treatment effect inferences. Two strategies to address this requirement are to adjust for covariates that are highly correlated with the outcome, and to leverage historical control information via Bayes' theorem. We propose a new Bayesian prognostic covariate adjustment methodology, referred to as Bayesian PROCOVA, that combines these two strategies. Covariate adjustment in Bayesian PROCOVA is based on generative artificial intelligence (AI) algorithms that construct a digital twin generator (DTG) for RCT participants. The DTG is trained on historical control data and yields a digital twin (DT) probability distribution for each RCT participant's outcome under the control treatment. The expectation of the DT distribution, referred to as the prognostic score, defines the covariate for adjustment. Historical control information is leveraged via an additive mixture prior with two components: an informative prior probability distribution specified based on historical control data, and a weakly informative prior distribution. The mixture weight determines the extent to which posterior inferences are drawn from the informative component, versus the weakly informative component. This weight has a prior distribution as well, and so the entire additive mixture prior is completely pre-specifiable without involving any RCT information. We establish an efficient Gibbs algorithm for sampling from the posterior distribution, and derive closed-form expressions for the posterior mean and variance of the treatment effect parameter conditional on the weight, in Bayesian PROCOVA. We evaluate efficiency gains of Bayesian PROCOVA via its bias control and variance reduction compared to frequentist PROCOVA in simulation studies that encompass different discrepancies. These gains translate to smaller RCTs.

Diffusion generative models unlock new possibilities for inverse problems as they allow for the incorporation of strong empirical priors into the process of scientific inference. Recently, diffusion models received significant attention for solving inverse problems by posterior sampling, but many challenges remain open due to the intractability of this sampling process. Prior work resorted to Gaussian approximations to conditional densities of the reverse process, leveraging Tweedie's formula to parameterise its mean, complemented with various heuristics. In this work, we leverage higher order information using Tweedie's formula and obtain a finer approximation with a principled covariance estimate. This novel approximation removes any time-dependent step-size hyperparameters required by earlier methods, and enables higher quality approximations of the posterior density which results in better samples. Specifically, we tackle noisy linear inverse problems and obtain a novel approximation to the gradient of the likelihood. We then plug this gradient estimate into various diffusion models and show that this method is optimal for a Gaussian data distribution. We illustrate the empirical effectiveness of our approach for general linear inverse problems on toy synthetic examples as well as image restoration using pretrained diffusion models as the prior. We show that our method improves the sample quality by providing statistically principled approximations to diffusion posterior sampling problem.

`3D Semantic Scene Completion (SSC) has emerged as a nascent and pivotal undertaking in autonomous driving, aiming to predict voxel occupancy within volumetric scenes. However, prevailing methodologies primarily focus on voxel-wise feature aggregation, while neglecting instance semantics and scene context. In this paper, we present a novel paradigm termed Symphonies (Scene-from-Insts), that delves into the integration of instance queries to orchestrate 2D-to-3D reconstruction and 3D scene modeling. Leveraging our proposed Serial Instance-Propagated Attentions, Symphonies dynamically encodes instance-centric semantics, facilitating intricate interactions between image-based and volumetric domains. Simultaneously, Symphonies enables holistic scene comprehension by capturing context through the efficient fusion of instance queries, alleviating geometric ambiguity such as occlusion and perspective errors through contextual scene reasoning. Experimental results demonstrate that Symphonies achieves state-of-the-art performance on challenging benchmarks SemanticKITTI and SSCBench-KITTI-360, yielding remarkable mIoU scores of 15.04 and 18.58, respectively. These results showcase the paradigm's promising advancements. The code is available at //github.com/hustvl/Symphonies.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司