亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 輸出 · 求逆 · Processing(編程語言) · 原點 ·
2024 年 12 月 3 日

A facial morph is an image created by combining two face images pertaining to two distinct identities. Face demorphing inverts the process and tries to recover the original images constituting a facial morph. While morph attack detection (MAD) techniques can be used to flag morph images, they do not divulge any visual information about the faces used to create them. Demorphing helps address this problem. Existing demorphing techniques are either very restrictive (assume identities during testing) or produce feeble outputs (both outputs look very similar). In this paper, we overcome these issues by proposing dc-GAN, a novel GAN-based demorphing method conditioned on the morph images. Our method overcomes morph-replication and produces high quality reconstructions of the bonafide images used to create the morphs. Moreover, our method is highly generalizable across demorphing paradigms (differential/reference-free). We conduct experiments on AMSL, FRLL-Morphs and MorDiff datasets to showcase the efficacy of our method.

Continual Learning (CL) involves adapting the prior Deep Neural Network (DNN) knowledge to new tasks, without forgetting the old ones. However, modern CL techniques focus on provisioning memory capabilities to existing DNN models rather than designing new ones that are able to adapt according to the task at hand. This paper presents the novel Feedback Continual Learning Vision Transformer (FCL-ViT) that uses a feedback mechanism to generate real-time dynamic attention features tailored to the current task. The FCL-ViT operates in two Phases. In phase 1, the generic image features are produced and determine where the Transformer should attend on the current image. In phase 2, task-specific image features are generated that leverage dynamic attention. To this end, Tunable self-Attention Blocks (TABs) and Task Specific Blocks (TSBs) are introduced that operate in both phases and are responsible for tuning the TABs attention, respectively. The FCL-ViT surpasses state-of-the-art performance on Continual Learning compared to benchmark methods, while retaining a small number of trainable DNN parameters.

Upper-limb amputees face tremendous difficulty in operating dexterous powered prostheses. Previous work has shown that aspects of prosthetic hand, wrist, or elbow control can be improved through "intelligent" control, by combining movement-based or gaze-based intent estimation with low-level robotic autonomy. However, no such solutions exist for whole-arm control. Moreover, hardware platforms for advanced prosthetic control are expensive, and existing simulation platforms are not well-designed for integration with robotics software frameworks. We present the Prosthetic Arm Control Testbed (ProACT), a platform for evaluating intelligent control methods for prosthetic arms in an immersive (Augmented Reality) simulation setting. We demonstrate the use of ProACT through preliminary studies, with non-amputee participants performing an adapted Box-and-Blocks task with and without intent estimation. We further discuss how our observations may inform the design of prosthesis control methods, as well as the design of future studies using the platform. To the best of our knowledge, this constitutes the first study of semi-autonomous control for complex whole-arm prostheses, the first study including sequential task modeling in the context of wearable prosthetic arms, and the first testbed of its kind. Towards the goal of supporting future research in intelligent prosthetics, the system is built upon on existing open-source frameworks for robotics, and is available at //arm.stanford.edu/proact.

Recent advances in 3D representations, such as Neural Radiance Fields and 3D Gaussian Splatting, have greatly improved realistic scene modeling and novel-view synthesis. However, achieving controllable and consistent editing in dynamic 3D scenes remains a significant challenge. Previous work is largely constrained by its editing backbones, resulting in inconsistent edits and limited controllability. In our work, we introduce a novel framework that first fine-tunes the InstructPix2Pix model, followed by a two-stage optimization of the scene based on deformable 3D Gaussians. Our fine-tuning enables the model to "learn" the editing ability from a single edited reference image, transforming the complex task of dynamic scene editing into a simple 2D image editing process. By directly learning editing regions and styles from the reference, our approach enables consistent and precise local edits without the need for tracking desired editing regions, effectively addressing key challenges in dynamic scene editing. Then, our two-stage optimization progressively edits the trained dynamic scene, using a designed edited image buffer to accelerate convergence and improve temporal consistency. Compared to state-of-the-art methods, our approach offers more flexible and controllable local scene editing, achieving high-quality and consistent results.

Rencently, Gaussian splatting has demonstrated significant success in novel view synthesis. Current methods often regress Gaussians with pixel or point cloud correspondence, linking each Gaussian with a pixel or a 3D point. This leads to the redundancy of Gaussians being used to overfit the correspondence rather than the objects represented by the 3D Gaussians themselves, consequently wasting resources and lacking accurate geometries or textures. In this paper, we introduce LeanGaussian, a novel approach that treats each query in deformable Transformer as one 3D Gaussian ellipsoid, breaking the pixel or point cloud correspondence constraints. We leverage deformable decoder to iteratively refine the Gaussians layer-by-layer with the image features as keys and values. Notably, the center of each 3D Gaussian is defined as 3D reference points, which are then projected onto the image for deformable attention in 2D space. On both the ShapeNet SRN dataset (category level) and the Google Scanned Objects dataset (open-category level, trained with the Objaverse dataset), our approach, outperforms prior methods by approximately 6.1\%, achieving a PSNR of 25.44 and 22.36, respectively. Additionally, our method achieves a 3D reconstruction speed of 7.2 FPS and rendering speed 500 FPS. The code will be released at //github.com/jwubz123/DIG3D.

Segment Anything Model (SAM) has made great progress in anomaly segmentation tasks due to its impressive generalization ability. However, existing methods that directly apply SAM through prompting often overlook the domain shift issue, where SAM performs well on natural images but struggles in industrial scenarios. Parameter-Efficient Fine-Tuning (PEFT) offers a promising solution, but it may yield suboptimal performance by not adequately addressing the perception challenges during adaptation to anomaly images. In this paper, we propose a novel Self-Perceptinon Tuning (SPT) method, aiming to enhance SAM's perception capability for anomaly segmentation. The SPT method incorporates a self-drafting tuning strategy, which generates an initial coarse draft of the anomaly mask, followed by a refinement process. Additionally, a visual-relation-aware adapter is introduced to improve the perception of discriminative relational information for mask generation. Extensive experimental results on several benchmark datasets demonstrate that our SPT method can significantly outperform baseline methods, validating its effectiveness. Models and codes will be available online.

We explore ideas for scaling verification methods for quantum circuits using SMT (Satisfiability Modulo Theories) solvers. We propose two primary strategies: (1) decomposing proof obligations via compositional verification and (2) leveraging linear over-approximation techniques for gate effects. We present two examples and demonstrate the application of these ideas to proof Hamming weight preservation.

The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes. Further video results are shown in //vcedit.github.io.

Our previously proposed MossFormer has achieved promising performance in monaural speech separation. However, it predominantly adopts a self-attention-based MossFormer module, which tends to emphasize longer-range, coarser-scale dependencies, with a deficiency in effectively modelling finer-scale recurrent patterns. In this paper, we introduce a novel hybrid model that provides the capabilities to model both long-range, coarse-scale dependencies and fine-scale recurrent patterns by integrating a recurrent module into the MossFormer framework. Instead of applying the recurrent neural networks (RNNs) that use traditional recurrent connections, we present a recurrent module based on a feedforward sequential memory network (FSMN), which is considered "RNN-free" recurrent network due to the ability to capture recurrent patterns without using recurrent connections. Our recurrent module mainly comprises an enhanced dilated FSMN block by using gated convolutional units (GCU) and dense connections. In addition, a bottleneck layer and an output layer are also added for controlling information flow. The recurrent module relies on linear projections and convolutions for seamless, parallel processing of the entire sequence. The integrated MossFormer2 hybrid model demonstrates remarkable enhancements over MossFormer and surpasses other state-of-the-art methods in WSJ0-2/3mix, Libri2Mix, and WHAM!/WHAMR! benchmarks (//github.com/modelscope/ClearerVoice-Studio).

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

北京阿比特科技有限公司