亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph representation learning (GRL) is critical for extracting insights from complex network structures, but it also raises security concerns due to potential privacy vulnerabilities in these representations. This paper investigates the structural vulnerabilities in graph neural models where sensitive topological information can be inferred through edge reconstruction attacks. Our research primarily addresses the theoretical underpinnings of similarity-based edge reconstruction attacks (SERA), furnishing a non-asymptotic analysis of their reconstruction capacities. Moreover, we present empirical corroboration indicating that such attacks can perfectly reconstruct sparse graphs as graph size increases. Conversely, we establish that sparsity is a critical factor for SERA's effectiveness, as demonstrated through analysis and experiments on (dense) stochastic block models. Finally, we explore the resilience of private graph representations produced via noisy aggregation (NAG) mechanism against SERA. Through theoretical analysis and empirical assessments, we affirm the mitigation of SERA using NAG . In parallel, we also empirically delineate instances wherein SERA demonstrates both efficacy and deficiency in its capacity to function as an instrument for elucidating the trade-off between privacy and utility.

相關內容

A new geometric procedure to construct symplectic methods for constrained mechanical systems is developed in this paper. The definition of a map coming from the notion of retraction maps allows to adapt the continuous problem to the discretization rule rather than viceversa. As a result, the constraint submanifold is exactly preserved by the symplectic discrete flow and the extension of these methods to the case of non-linear configuration spaces is doable.

It is well known that Kleisli categories provide a natural language to model side effects. For instance, in the theory of coalgebras, behavioural equivalence coincides with language equivalence (instead of bisimilarity) when nondeterministic automata are modelled as coalgebras living in the Kleisli category of the powerset monad. In this paper, our aim is to establish decorated trace semantics based on language and ready equivalences for conditional transition systems (CTSs) with/without upgrades. To this end, we model CTSs as coalgebras living in the Kleisli category of a relative monad. Our results are twofold. First, we reduce the problem of defining a Kleisli lifting for the machine endofunctor in the context of a relative monad to the classical notion of Kleisli lifting. Second, we provide a recipe based on indexed categories to construct a Kleisli lifting for general endofunctors.

Generative modeling for tabular data has recently gained significant attention in the Deep Learning domain. Its objective is to estimate the underlying distribution of the data. However, estimating the underlying distribution of tabular data has its unique challenges. Specifically, this data modality is composed of mixed types of features, making it a non-trivial task for a model to learn intra-relationships between them. One approach to address mixture is to embed each feature into a continuous matrix via tokenization, while a solution to capture intra-relationships between variables is via the transformer architecture. In this work, we empirically investigate the potential of using embedding representations on tabular data generation, utilizing tensor contraction layers and transformers to model the underlying distribution of tabular data within Variational Autoencoders. Specifically, we compare four architectural approaches: a baseline VAE model, two variants that focus on tensor contraction layers and transformers respectively, and a hybrid model that integrates both techniques. Our empirical study, conducted across multiple datasets from the OpenML CC18 suite, compares models over density estimation and Machine Learning efficiency metrics. The main takeaway from our results is that leveraging embedding representations with the help of tensor contraction layers improves density estimation metrics, albeit maintaining competitive performance in terms of machine learning efficiency.

There has been a recent surge in transformer-based architectures for learning on graphs, mainly motivated by attention as an effective learning mechanism and the desire to supersede handcrafted operators characteristic of message passing schemes. However, concerns over their empirical effectiveness, scalability, and complexity of the pre-processing steps have been raised, especially in relation to much simpler graph neural networks that typically perform on par with them across a wide range of benchmarks. To tackle these shortcomings, we consider graphs as sets of edges and propose a purely attention-based approach consisting of an encoder and an attention pooling mechanism. The encoder vertically interleaves masked and vanilla self-attention modules to learn an effective representations of edges, while allowing for tackling possible misspecifications in input graphs. Despite its simplicity, the approach outperforms fine-tuned message passing baselines and recently proposed transformer-based methods on more than 70 node and graph-level tasks, including challenging long-range benchmarks. Moreover, we demonstrate state-of-the-art performance across different tasks, ranging from molecular to vision graphs, and heterophilous node classification. The approach also outperforms graph neural networks and transformers in transfer learning settings, and scales much better than alternatives with a similar performance level or expressive power.

With the promise of accelerating software development, low-code platforms (LCPs) are becoming popular across various industries. Nevertheless, there are still barriers hindering their adoption. Among them, vendor lock-in is a major concern, especially considering the lack of interoperability between these platforms. Typically, after modeling an application in one LCP, migrating to another requires starting from scratch remodeling everything (the data model, the graphical user interface, workflows, etc.), in the new platform. To overcome this situation, this work proposes an approach to improve the interoperability of LCPs by (semi)automatically migrating models specified in one platform to another one. The concrete migration path depends on the capabilities of the source and target tools. We first analyze popular LCPs, characterize their import and export alternatives and define transformations between those data formats when available. This is then complemented with an LLM-based solution, where image recognition features of large language models are employed to migrate models based on a simple image export of the model at hand. The full pipelines are implemented on top of the BESSER modeling framework that acts as a pivot representation between the tools.

Developing meaningful and efficient representations that separate the fundamental structure of the data generation mechanism is crucial in representation learning. However, Disentangled Representation Learning has not fully shown its potential on real images, because of correlated generative factors, their resolution and limited access to ground truth labels. Specifically on the latter, we investigate the possibility of leveraging synthetic data to learn general-purpose disentangled representations applicable to real data, discussing the effect of fine-tuning and what properties of disentanglement are preserved after the transfer. We provide an extensive empirical study to address these issues. In addition, we propose a new interpretable intervention-based metric, to measure the quality of factors encoding in the representation. Our results indicate that some level of disentanglement, transferring a representation from synthetic to real data, is possible and effective.

Image classification with neural networks (NNs) is widely used in industrial processes, situations where the model likely encounters unknown objects during deployment, i.e., out-of-distribution (OOD) data. Worryingly, NNs tend to make confident yet incorrect predictions when confronted with OOD data. To increase the models' reliability, they should quantify the uncertainty in their own predictions, communicating when the output should (not) be trusted. Deep ensembles, composed of multiple independent NNs, have been shown to perform strongly but are computationally expensive. Recent research has proposed more efficient NN ensembles, namely the snapshot, batch, and multi-input multi-output ensemble. This study investigates the predictive and uncertainty performance of efficient NN ensembles in the context of image classification for industrial processes. It is the first to provide a comprehensive comparison and it proposes a novel Diversity Quality metric to quantify the ensembles' performance on the in-distribution and OOD sets in one single metric. The results highlight the batch ensemble as a cost-effective and competitive alternative to the deep ensemble. It matches the deep ensemble in both uncertainty and accuracy while exhibiting considerable savings in training time, test time, and memory storage.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司