亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a model learning Semi-parametric rela- tionships in an Expert Bayesian Network (SEBN) with linear parameter and structure constraints. We use Gaussian Pro- cesses and a Horseshoe prior to introduce minimal nonlin- ear components. To prioritize modifying the expert graph over adding new edges, we optimize differential Horseshoe scales. In real-world datasets with unknown truth, we gen- erate diverse graphs to accommodate user input, addressing identifiability issues and enhancing interpretability. Evalua- tion on synthetic and UCI Liver Disorders datasets, using metrics like structural Hamming Distance and test likelihood, demonstrates our models outperform state-of-the-art semi- parametric Bayesian Network model.

相關內容

Federated Learning (FL) revolutionizes collaborative machine learning among Internet of Things (IoT) devices by enabling them to train models collectively while preserving data privacy. FL algorithms fall into two primary categories: synchronous and asynchronous. While synchronous FL efficiently handles straggler devices, it can compromise convergence speed and model accuracy. In contrast, asynchronous FL allows all devices to participate but incurs high communication overhead and potential model staleness. To overcome these limitations, the semi-synchronous FL framework introduces client tiering based on computing and communication latencies. Clients in different tiers upload their local models at distinct frequencies, striking a balance between straggler mitigation and communication costs. Enter the DecantFed algorithm (Dynamic client clustering, bandwidth allocation, and local training for semi-synchronous Federated learning), a dynamic solution that optimizes client clustering, bandwidth allocation, and local training workloads to maximize data sample processing rates. Additionally, DecantFed adapts client learning rates according to their tiers, addressing the model staleness problem. The algorithm's performance shines in extensive simulations using benchmark datasets, including MNIST and CIFAR-10, under independent and identically distributed (IID) and non-IID scenarios. DecantFed outpaces FedAvg and FedProx in terms of convergence speed and delivers a remarkable minimum 28% boost in model accuracy compared to FedProx.

This paper considers hypothesis testing in semiparametric models which may be non-regular. I show that C($\alpha$) style tests are locally regular under mild conditions, including in cases where locally regular estimators do not exist, such as models which are (semi-parametrically) weakly identified. I characterise the appropriate limit experiment in which to study local (asymptotic) optimality of tests in the non-regular case, permitting the generalisation of classical power bounds to this case. I give conditions under which these power bounds are attained by the proposed C($\alpha$) style tests. The application of the theory to a single index model and an instrumental variables model is worked out in detail.

The vSPACE experimental proof-of-concept (PoC) on the TrueElect[Anon][Creds] protocol presents a novel approach to secure, private, and scalable elections, extending the TrueElect and ElectAnon protocols with the integration of AnonCreds SSI (Self-Sovereign Identity). Such a protocol PoC is situated within a Zero-Trust Architecture (ZTA) and leverages confidential computing, continuous authentication, multi-party computation (MPC), and well-architected framework (WAF) principles to address the challenges of cybersecurity, privacy, and trust over IP (ToIP) protection. Employing a Kubernetes confidential cluster within an Enterprise-Scale Landing Zone (ESLZ), vSPACE integrates Distributed Ledger Technology (DLT) for immutable and certifiable audit trails. The Infrastructure as Code (IaC) model ensures rapid deployment, consistent management, and adherence to security standards, making vSPACE a future-proof solution for digital voting systems.

We present DiffChat, a novel method to align Large Language Models (LLMs) to "chat" with prompt-as-input Text-to-Image Synthesis (TIS) models (e.g., Stable Diffusion) for interactive image creation. Given a raw prompt/image and a user-specified instruction, DiffChat can effectively make appropriate modifications and generate the target prompt, which can be leveraged to create the target image of high quality. To achieve this, we first collect an instruction-following prompt engineering dataset named InstructPE for the supervised training of DiffChat. Next, we propose a reinforcement learning framework with the feedback of three core criteria for image creation, i.e., aesthetics, user preference, and content integrity. It involves an action-space dynamic modification technique to obtain more relevant positive samples and harder negative samples during the off-policy sampling. Content integrity is also introduced into the value estimation function for further improvement of produced images. Our method can exhibit superior performance than baseline models and strong competitors based on both automatic and human evaluations, which fully demonstrates its effectiveness.

Effectively representing heterogeneous tabular datasets for meta-learning remains an open problem. Previous approaches rely on predefined meta-features, for example, statistical measures or landmarkers. Encoder-based models, such as Dataset2Vec, allow us to extract significant meta-features automatically without human intervention. This research introduces a novel encoder-based representation of tabular datasets implemented within the liltab package available on GitHub //github.com/azoz01/liltab. Our package is based on an established model for heterogeneous tabular data proposed in [Iwata and Kumagai, 2020]. The proposed approach employs a different model for encoding feature relationships, generating alternative representations compared to existing methods like Dataset2Vec. Both of them leverage the fundamental assumption of dataset similarity learning. In this work, we evaluate Dataset2Vec and liltab on two common meta-tasks - representing entire datasets and hyperparameter optimization warm-start. However, validation on an independent metaMIMIC dataset highlights the nuanced challenges in representation learning. We show that general representations may not suffice for some meta-tasks where requirements are not explicitly considered during extraction. [Iwata and Kumagai, 2020] Tomoharu Iwata and Atsutoshi Kumagai. Meta-learning from Tasks with Heterogeneous Attribute Spaces. In Advances in Neural Information Processing Systems, 2020.

In this study, we aim to enhance the arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization. We identify a previously overlooked objective of query dependency in such optimization and elucidate two ensuing challenges that impede the successful and economical design of prompt optimization techniques. One primary issue is the absence of an effective method to evaluate prompts during inference when the golden answer is unavailable. Concurrently, learning via interactions with the LLMs to navigate the expansive natural language prompting space proves to be resource-intensive. To address this, we introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data. Such data exists as by-products when diverse prompts are benchmarked on open-accessible datasets. With Prompt-OIRL, the query-dependent prompt optimization objective is achieved by first learning an offline reward model. This model can evaluate any query-prompt pairs without accessing LLMs. Subsequently, a best-of-N strategy is deployed to recommend the optimal prompt. Our experimental evaluations across various LLM scales and arithmetic reasoning datasets underscore both the efficacy and economic viability of the proposed approach.

Despite advancements in text-to-image generation (T2I), prior methods often face text-image misalignment problems such as relation confusion in generated images. Existing solutions involve cross-attention manipulation for better compositional understanding or integrating large language models for improved layout planning. However, the inherent alignment capabilities of T2I models are still inadequate. By reviewing the link between generative and discriminative modeling, we posit that T2I models' discriminative abilities may reflect their text-image alignment proficiency during generation. In this light, we advocate bolstering the discriminative abilities of T2I models to achieve more precise text-to-image alignment for generation. We present a discriminative adapter built on T2I models to probe their discriminative abilities on two representative tasks and leverage discriminative fine-tuning to improve their text-image alignment. As a bonus of the discriminative adapter, a self-correction mechanism can leverage discriminative gradients to better align generated images to text prompts during inference. Comprehensive evaluations across three benchmark datasets, including both in-distribution and out-of-distribution scenarios, demonstrate our method's superior generation performance. Meanwhile, it achieves state-of-the-art discriminative performance on the two discriminative tasks compared to other generative models.

We introduce Syntax-Aware Fill-In-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at //github.com/gonglinyuan/safim, and the leaderboard is available at //safimbenchmark.com.

This paper presents a novel multi-modal Multi-Object Tracking (MOT) algorithm for self-driving cars that combines camera and LiDAR data. Camera frames are processed with a state-of-the-art 3D object detector, whereas classical clustering techniques are used to process LiDAR observations. The proposed MOT algorithm comprises a three-step association process, an Extended Kalman filter for estimating the motion of each detected dynamic obstacle, and a track management phase. The EKF motion model requires the current measured relative position and orientation of the observed object and the longitudinal and angular velocities of the ego vehicle as inputs. Unlike most state-of-the-art multi-modal MOT approaches, the proposed algorithm does not rely on maps or knowledge of the ego global pose. Moreover, it uses a 3D detector exclusively for cameras and is agnostic to the type of LiDAR sensor used. The algorithm is validated both in simulation and with real-world data, with satisfactory results.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

北京阿比特科技有限公司