Multilingual speech recognition for both monolingual and code-switching speech is a challenging task. Recently, based on the Mixture of Experts (MoE), many works have made good progress in multilingual and code-switching ASR, but present huge computational complexity with the increase of supported languages. In this work, we propose a computation-efficient network named Language-Routing Mixture of Experts (LR-MoE) for multilingual and code-switching ASR. LR-MoE extracts language-specific representations through the Mixture of Language Experts (MLE), which is guided to learn by a frame-wise language routing mechanism. The weight-shared frame-level language identification (LID) network is jointly trained as the shared pre-router of each MoE layer. Experiments show that the proposed method significantly improves multilingual and code-switching speech recognition performances over baseline with comparable computational efficiency.
We study stochastic Cubic Newton methods for solving general possibly non-convex minimization problems. We propose a new framework, which we call the helper framework, that provides a unified view of the stochastic and variance-reduced second-order algorithms equipped with global complexity guarantees. It can also be applied to learning with auxiliary information. Our helper framework offers the algorithm designer high flexibility for constructing and analyzing the stochastic Cubic Newton methods, allowing arbitrary size batches, and the use of noisy and possibly biased estimates of the gradients and Hessians, incorporating both the variance reduction and the lazy Hessian updates. We recover the best-known complexities for the stochastic and variance-reduced Cubic Newton, under weak assumptions on the noise. A direct consequence of our theory is the new lazy stochastic second-order method, which significantly improves the arithmetic complexity for large dimension problems. We also establish complexity bounds for the classes of gradient-dominated objectives, that include convex and strongly convex problems. For Auxiliary Learning, we show that using a helper (auxiliary function) can outperform training alone if a given similarity measure is small.
We provide a method, based on automata theory, to mechanically prove the correctness of many numeration systems based on Fibonacci numbers. With it, long case-based and induction-based proofs of correctness can be replaced by simply constructing a regular expression (or finite automaton) specifying the rules for valid representations, followed by a short computation. Examples of the systems that can be handled using our technique include Brown's lazy representation (1965), the far-difference representation developed by Alpert (2009), and three representations proposed by Hajnal (2023). We also provide three additional systems and prove their validity.
A set of features independent of character stroke direction and order variations is proposed for online handwritten character recognition. A method is developed that maps features like co-ordinates of points, orientations of strokes at points, and dynamics of orientations of strokes at points spatially as a function of co-ordinate values of the points and computes histograms of these features from different regions in the spatial map. Different features like spatio-temporal, discrete Fourier transform, discrete cosine transform, discrete wavelet transform, spatial, and histograms of oriented gradients used in other studies for training classifiers for character recognition are considered. The classifier chosen for classification performance comparison, when trained with different features, is support vector machines (SVM). The character datasets used for training and testing the classifiers consist of online handwritten samples of 96 different Hindi characters. There are 12832 and 2821 samples in training and testing datasets, respectively. SVM classifiers trained with the proposed features has the highest classification accuracy of 92.9\% when compared to the performances of SVM classifiers trained with the other features and tested on the same testing dataset. Therefore, the proposed features have better character discriminative capability than the other features considered for comparison.
Copy-move forgery on speech (CMF), coupled with post-processing techniques, presents a great challenge to the forensic detection and localization of tampered areas. Most of the existing CMF detection approaches necessitate pre-segmentation of speech to facilitate similarity calculations among these segments. However, these approaches usually suffer from the problems of uncontrollable computational complexity and sensitivity to the presence of a word that is read multiple times within a speech recording. To address these issues, we propose a local feature tensors-based CMF detection algorithm that can transform duplicate detection and localization problems into a special tensor-matching procedure, accompanied by complete theoretical analysis as support. Through extensive experimentation, we have demonstrated that our method exhibits computational efficiency and robustness against post-processing techniques. Notably, it can effectively and blindly detect tampered segments, even those as short as a fractional second. These advantages highlight the promising potential of our approach for practical applications.
Modern depth sensors can generate a huge number of 3D points in few seconds to be latter processed by Localization and Mapping algorithms. Ideally, these algorithms should handle efficiently large sizes of Point Clouds under the assumption that using more points implies more information available. The Eigen Factors (EF) is a new algorithm that solves SLAM by using planes as the main geometric primitive. To do so, EF exhaustively calculates the error of all points at complexity $O(1)$, thanks to the {\em Summation matrix} $S$ of homogeneous points. The solution of EF is highly efficient: i) the state variables are only the sensor poses -- trajectory, while the plane parameters are estimated previously in closed from and ii) EF alternating optimization uses a Newton-Raphson method by a direct analytical calculation of the gradient and the Hessian, which turns out to be a block diagonal matrix. Since we require to differentiate over eigenvalues and matrix elements, we have developed an intuitive methodology to calculate partial derivatives in the manifold of rigid body transformations $SE(3)$, which could be applied to unrelated problems that require analytical derivatives of certain complexity. We evaluate EF and other state-of-the-art plane SLAM back-end algorithms in a synthetic environment. The evaluation is extended to ICL dataset (RGBD) and LiDAR KITTI dataset. Code is publicly available at //github.com/prime-slam/EF-plane-SLAM.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.