亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we consider the linear inverse problem $y=Ax+\epsilon$, where $A\colon X\to Y$ is a known linear operator between the separable Hilbert spaces $X$ and $Y$, $x$ is a random variable in $X$ and $\epsilon$ is a zero-mean random process in $Y$. This setting covers several inverse problems in imaging including denoising, deblurring, and X-ray tomography. Within the classical framework of regularization, we focus on the case where the regularization functional is not given a priori but learned from data. Our first result is a characterization of the optimal generalized Tikhonov regularizer, with respect to the mean squared error. We find that it is completely independent of the forward operator $A$ and depends only on the mean and covariance of $x$. Then, we consider the problem of learning the regularizer from a finite training set in two different frameworks: one supervised, based on samples of both $x$ and $y$, and one unsupervised, based only on samples of $x$. In both cases, we prove generalization bounds, under some weak assumptions on the distribution of $x$ and $\epsilon$, including the case of sub-Gaussian variables. Our bounds hold in infinite-dimensional spaces, thereby showing that finer and finer discretizations do not make this learning problem harder. The results are validated through numerical simulations.

相關內容

Motivated by applications in reinforcement learning (RL), we study a nonlinear stochastic approximation (SA) algorithm under Markovian noise, and establish its finite-sample convergence bounds under various stepsizes. Specifically, we show that when using constant stepsize (i.e., $\alpha_k\equiv \alpha$), the algorithm achieves exponential fast convergence to a neighborhood (with radius $O(\alpha\log(1/\alpha))$) around the desired limit point. When using diminishing stepsizes with appropriate decay rate, the algorithm converges with rate $O(\log(k)/k)$. Our proof is based on Lyapunov drift arguments, and to handle the Markovian noise, we exploit the fast mixing of the underlying Markov chain. To demonstrate the generality of our theoretical results on Markovian SA, we use it to derive the finite-sample bounds of the popular $Q$-learning with linear function approximation algorithm, under a condition on the behavior policy. Importantly, we do not need to make the assumption that the samples are i.i.d., and do not require an artificial projection step in the algorithm to maintain the boundedness of the iterates. Numerical simulations corroborate our theoretical results.

Optimal linear prediction (aka. kriging) of a random field $\{Z(x)\}_{x\in\mathcal{X}}$ indexed by a compact metric space $(\mathcal{X},d_{\mathcal{X}})$ can be obtained if the mean value function $m\colon\mathcal{X}\to\mathbb{R}$ and the covariance function $\varrho\colon\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ of $Z$ are known. We consider the problem of predicting the value of $Z(x^*)$ at some location $x^*\in\mathcal{X}$ based on observations at locations $\{x_j\}_{j=1}^n$ which accumulate at $x^*$ as $n\to\infty$ (or, more generally, predicting $\varphi(Z)$ based on $\{\varphi_j(Z)\}_{j=1}^n$ for linear functionals $\varphi,\varphi_1,\ldots,\varphi_n$). Our main result characterizes the asymptotic performance of linear predictors (as $n$ increases) based on an incorrect second order structure $(\tilde{m},\tilde{\varrho})$, without any restrictive assumptions on $\varrho,\tilde{\varrho}$ such as stationarity. We, for the first time, provide necessary and sufficient conditions on $(\tilde{m},\tilde{\varrho})$ for asymptotic optimality of the corresponding linear predictor holding uniformly with respect to $\varphi$. These general results are illustrated by weakly stationary random fields on $\mathcal{X}\subset\mathbb{R}^d$ with Mat\'ern or periodic covariance functions, and on the sphere $\mathcal{X}=\mathbb{S}^2$ for the case of two isotropic covariance functions.

Approximating the Koopman operator from data is numerically challenging when many lifting functions are considered. Even low-dimensional systems can yield unstable or ill-conditioned results in a high-dimensional lifted space. In this paper, Extended Dynamic Mode Decomposition (DMD) and DMD with control, two popular methods for approximating the Koopman operator, are reformulated as convex optimization problems with linear matrix inequality constraints. Hard asymptotic stability constraints and system norm regularizers are considered as methods to improve the numerical conditioning of the approximate Koopman operator. In particular, the H-infinity norm is used as a regularizer to penalize the input-output gain of the linear system defined by the Koopman operator. Weighting functions are then applied to penalize the system gain at specific frequencies. Experimental results using data from an aircraft fatigue structural test rig and a soft robot arm highlight the advantages of the proposed regression methods.

We give tight statistical query (SQ) lower bounds for learnining halfspaces in the presence of Massart noise. In particular, suppose that all labels are corrupted with probability at most $\eta$. We show that for arbitrary $\eta \in [0,1/2]$ every SQ algorithm achieving misclassification error better than $\eta$ requires queries of superpolynomial accuracy or at least a superpolynomial number of queries. Further, this continues to hold even if the information-theoretically optimal error $\mathrm{OPT}$ is as small as $\exp\left(-\log^c(d)\right)$, where $d$ is the dimension and $0 < c < 1$ is an arbitrary absolute constant, and an overwhelming fraction of examples are noiseless. Our lower bound matches known polynomial time algorithms, which are also implementable in the SQ framework. Previously, such lower bounds only ruled out algorithms achieving error $\mathrm{OPT} + \epsilon$ or error better than $\Omega(\eta)$ or, if $\eta$ is close to $1/2$, error $\eta - o_\eta(1)$, where the term $o_\eta(1)$ is constant in $d$ but going to 0 for $\eta$ approaching $1/2$. As a consequence, we also show that achieving misclassification error better than $1/2$ in the $(A,\alpha)$-Tsybakov model is SQ-hard for $A$ constant and $\alpha$ bounded away from 1.

We introduce Stochastic Asymptotical Regularization (SAR) methods for the uncertainty quantification of the stable approximate solution of ill-posed linear-operator equations, which are deterministic models for numerous inverse problems in science and engineering. We prove the regularizing properties of SAR with regard to mean-square convergence. We also show that SAR is an optimal-order regularization method for linear ill-posed problems provided that the terminating time of SAR is chosen according to the smoothness of the solution. This result is proven for both a priori and a posteriori stopping rules under general range-type source conditions. Furthermore, some converse results of SAR are verified. Two iterative schemes are developed for the numerical realization of SAR, and the convergence analyses of these two numerical schemes are also provided. A toy example and a real-world problem of biosensor tomography are studied to show the accuracy and the advantages of SAR: compared with the conventional deterministic regularization approaches for deterministic inverse problems, SAR can provide the uncertainty quantification of the quantity of interest, which can in turn be used to reveal and explicate the hidden information about real-world problems, usually obscured by the incomplete mathematical modeling and the ascendence of complex-structured noise.

Stochastic gradient descent ascent (SGDA) and its variants have been the workhorse for solving minimax problems. However, in contrast to the well-studied stochastic gradient descent (SGD) with differential privacy (DP) constraints, there is little work on understanding the generalization (utility) of SGDA with DP constraints. In this paper, we use the algorithmic stability approach to establish the generalization (utility) of DP-SGDA in different settings. In particular, for the convex-concave setting, we prove that the DP-SGDA can achieve an optimal utility rate in terms of the weak primal-dual population risk in both smooth and non-smooth cases. To our best knowledge, this is the first-ever-known result for DP-SGDA in the non-smooth case. We further provide its utility analysis in the nonconvex-strongly-concave setting which is the first-ever-known result in terms of the primal population risk. The convergence and generalization results for this nonconvex setting are new even in the non-private setting. Finally, numerical experiments are conducted to demonstrate the effectiveness of DP-SGDA for both convex and nonconvex cases.

Finding a \emph{single} best solution is the most common objective in combinatorial optimization problems. However, such a single solution may not be applicable to real-world problems as objective functions and constraints are only "approximately" formulated for original real-world problems. To solve this issue, finding \emph{multiple} solutions is a natural direction, and diversity of solutions is an important concept in this context. Unfortunately, finding diverse solutions is much harder than finding a single solution. To cope with difficulty, we investigate the approximability of finding diverse solutions. As a main result, we propose a framework to design approximation algorithms for finding diverse solutions, which yields several outcomes including constant-factor approximation algorithms for finding diverse matchings in graphs and diverse common bases in two matroids and PTASes for finding diverse minimum cuts and interval schedulings.

We analyze the orthogonal greedy algorithm when applied to dictionaries $\mathbb{D}$ whose convex hull has small entropy. We show that if the metric entropy of the convex hull of $\mathbb{D}$ decays at a rate of $O(n^{-\frac{1}{2}-\alpha})$ for $\alpha > 0$, then the orthogonal greedy algorithm converges at the same rate on the variation space of $\mathbb{D}$. This improves upon the well-known $O(n^{-\frac{1}{2}})$ convergence rate of the orthogonal greedy algorithm in many cases, most notably for dictionaries corresponding to shallow neural networks. These results hold under no additional assumptions on the dictionary beyond the decay rate of the entropy of its convex hull. In addition, they are robust to noise in the target function and can be extended to convergence rates on the interpolation spaces of the variation norm. We show empirically that the predicted rates are obtained for the dictionary corresponding to shallow neural networks with Heaviside activation function in two dimensions. Finally, we show that these improved rates are sharp and prove a negative result showing that the iterates generated by the orthogonal greedy algorithm cannot in general be bounded in the variation norm of $\mathbb{D}$.

In the standard Gaussian linear measurement model $Y=X\mu_0+\xi \in \mathbb{R}^m$ with a fixed noise level $\sigma>0$, we consider the problem of estimating the unknown signal $\mu_0$ under a convex constraint $\mu_0 \in K$, where $K$ is a closed convex set in $\mathbb{R}^n$. We show that the risk of the natural convex constrained least squares estimator (LSE) $\hat{\mu}(\sigma)$ can be characterized exactly in high dimensional limits, by that of the convex constrained LSE $\hat{\mu}_K^{\mathsf{seq}}$ in the corresponding Gaussian sequence model at a different noise level. The characterization holds (uniformly) for risks in the maximal regime that ranges from constant order all the way down to essentially the parametric rate, as long as certain necessary non-degeneracy condition is satisfied for $\hat{\mu}(\sigma)$. The precise risk characterization reveals a fundamental difference between noiseless (or low noise limit) and noisy linear inverse problems in terms of the sample complexity for signal recovery. A concrete example is given by the isotonic regression problem: While exact recovery of a general monotone signal requires $m\gg n^{1/3}$ samples in the noiseless setting, consistent signal recovery in the noisy setting requires as few as $m\gg \log n$ samples. Such a discrepancy occurs when the low and high noise risk behavior of $\hat{\mu}_K^{\mathsf{seq}}$ differ significantly. In statistical languages, this occurs when $\hat{\mu}_K^{\mathsf{seq}}$ estimates $0$ at a faster `adaptation rate' than the slower `worst-case rate' for general signals. Several other examples, including non-negative least squares and generalized Lasso (in constrained forms), are also worked out to demonstrate the concrete applicability of the theory in problems of different types.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司