This paper discusses the problem of efficiently solving parity games where player Odd has to obey an additional 'strong transition fairness constraint' on its vertices -- given that a player Odd vertex $v$ is visited infinitely often, a particular subset of the outgoing edges (called live edges) of $v$ has to be taken infinitely often. Such games, which we call 'Odd-fair parity games', naturally arise from abstractions of cyber-physical systems for planning and control. In this paper, we present a new Zielonka-type algorithm for solving Odd-fair parity games. This algorithm not only shares 'the same worst-case time complexity' as Zielonka's algorithm for (normal) parity games but also preserves the algorithmic advantage Zielonka's algorithm possesses over other parity solvers with exponential time complexity. We additionally introduce a formalization of Odd player winning strategies in such games, which were unexplored previous to this work. This formalization serves dual purposes: firstly, it enables us to prove our Zielonka-type algorithm; secondly, it stands as a noteworthy contribution in its own right, augmenting our understanding of additional fairness assumptions in two-player games.
Many real-world dynamical systems can be described as State-Space Models (SSMs). In this formulation, each observation is emitted by a latent state, which follows first-order Markovian dynamics. A Probabilistic Deep SSM (ProDSSM) generalizes this framework to dynamical systems of unknown parametric form, where the transition and emission models are described by neural networks with uncertain weights. In this work, we propose the first deterministic inference algorithm for models of this type. Our framework allows efficient approximations for training and testing. We demonstrate in our experiments that our new method can be employed for a variety of tasks and enjoys a superior balance between predictive performance and computational budget.
Privacy-enhancing technologies (PETs), such as secure multi-party computation (MPC) and homomorphic encryption (HE), are deployed increasingly often to guarantee data confidentiality in computations over private, distributed data. Similarly, we observe a steep increase in the adoption of zero-knowledge proofs (ZKPs) to guarantee (public) verifiability of locally executed computations. We project that applications that are data intensive and require strong privacy guarantees, are also likely to require correctness guarantees. While the combination of methods for (public) verifiability and privacy protection has clear significance, many attempts are far from practical adoption. In this work, we analyze existing solutions that add (public) verifiability to privacy-preserving computations over distributed data, in order to preserve confidentiality and guarantee correctness. To determine the required security and usability properties and whether these are satisfied, we look at various application areas including verifiable outsourcing, distributed ledger technology (DLT), and genomics. We then classify the solutions and describe frequently used approaches as well as efficiency metrics. Last but not least, we identify open challenges and discuss directions for future research that make verifiable, privacy-preserving computations more secure, efficient, and applicable in the real world.
We show that the mechanism-design problem for a monopolist selling multiple, heterogeneous objects to a buyer with ex ante symmetric and additive values is equivalent to the mechanism-design problem for a monopolist selling identical objects to a buyer with decreasing marginal values. Symmetric and incentive-compatible mechanisms for heterogeneous objects are rank preserving, i.e., higher-valued objects are assigned with a higher probability. In the identical-objects model, every mechanism is rank preserving. This facilitates the equivalence, which we use in three applications.
We introduce a formal notion of masking fault-tolerance between probabilistic transition systems using stochastic games. These games are inspired in bisimulation games, but they also take into account the possible faulty behavior of systems. When no faults are present, these games boil down to probabilistic bisimulation games. Since these games could be infinite, we propose a symbolic way of representing them so that they can be solved in polynomial time. In particular, we use this notion of masking to quantify the level of masking fault-tolerance exhibited by almost-sure failing systems, i.e., those systems that eventually fail with probability 1. The level of masking fault-tolerance of almost-sure failing systems can be calculated by solving a collection of functional equations. We produce this metric in a setting in which one of the player behaves in a strong fair way (mimicking the idea of fair environments).
In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using Size Weight and Power (SWaP) constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We propose a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for SWaP-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including Semantic Loop Closure (SLC), we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.
In the framework of transferable utility coalitional games, a scoring (characteristic) function determines the value of any subset/coalition of agents. Agents decide on both which coalitions to form and the allocations of the values of the formed coalitions among their members. An important concept in coalitional games is that of a core solution, which is a partitioning of agents into coalitions and an associated allocation to each agent under which no group of agents can get a higher allocation by forming an alternative coalition. We present distributed learning dynamics for coalitional games that converge to a core solution whenever one exists. In these dynamics, an agent maintains a state consisting of (i) an aspiration level for its allocation and (ii) the coalition, if any, to which it belongs. In each stage, a randomly activated agent proposes to form a new coalition and changes its aspiration based on the success or failure of its proposal. The coalition membership structure is changed, accordingly, whenever the proposal succeeds. Required communications are that: (i) agents in the proposed new coalition need to reveal their current aspirations to the proposing agent, and (ii) agents are informed if they are joining the proposed coalition or if their existing coalition is broken. The proposing agent computes the feasibility of forming the coalition. We show that the dynamics hit an absorbing state whenever a core solution is reached. We further illustrate the distributed learning dynamics on a multi-agent task allocation setting.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.
Policy gradient methods are often applied to reinforcement learning in continuous multiagent games. These methods perform local search in the joint-action space, and as we show, they are susceptable to a game-theoretic pathology known as relative overgeneralization. To resolve this issue, we propose Multiagent Soft Q-learning, which can be seen as the analogue of applying Q-learning to continuous controls. We compare our method to MADDPG, a state-of-the-art approach, and show that our method achieves better coordination in multiagent cooperative tasks, converging to better local optima in the joint action space.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.