亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The use of Deep Learning and Computer Vision in the Cultural Heritage domain is becoming highly relevant in the last few years with lots of applications about audio smart guides, interactive museums and augmented reality. All these technologies require lots of data to work effectively and be useful for the user. In the context of artworks, such data is annotated by experts in an expensive and time consuming process. In particular, for each artwork, an image of the artwork and a description sheet have to be collected in order to perform common tasks like Visual Question Answering. In this paper we propose a method for Visual Question Answering that allows to generate at runtime a description sheet that can be used for answering both visual and contextual questions about the artwork, avoiding completely the image and the annotation process. For this purpose, we investigate on the use of GPT-3 for generating descriptions for artworks analyzing the quality of generated descriptions through captioning metrics. Finally we evaluate the performance for Visual Question Answering and captioning tasks.

相關內容

視覺問答(Visual Question Answering,VQA),是一種涉及計算機視覺和自然語言處理的學習任務。這一任務的定義如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻譯為中文:一個VQA系統以一張圖片和一個關于這張圖片形式自由、開放式的自然語言問題作為輸入,以生成一條自然語言答案作為輸出。簡單來說,VQA就是給定的圖片進行問答。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Text-guided image generation models, such as DALL-E 2 and Stable Diffusion, have recently received much attention from academia and the general public. Provided with textual descriptions, these models are capable of generating high-quality images depicting various concepts and styles. However, such models are trained on large amounts of public data and implicitly learn relationships from their training data that are not immediately apparent. We demonstrate that common multimodal models implicitly learned cultural biases that can be triggered and injected into the generated images by simply replacing single characters in the textual description with visually similar non-Latin characters. These so-called homoglyph replacements enable malicious users or service providers to induce biases into the generated images and even render the whole generation process useless. We practically illustrate such attacks on DALL-E 2 and Stable Diffusion as text-guided image generation models and further show that CLIP also behaves similarly. Our results further indicate that text encoders trained on multilingual data provide a way to mitigate the effects of homoglyph replacements.

Despite the great progress of Visual Question Answering (VQA), current VQA models heavily rely on the superficial correlation between the question type and its corresponding frequent answers (i.e., language priors) to make predictions, without really understanding the input. In this work, we define the training instances with the same question type but different answers as \textit{superficially similar instances}, and attribute the language priors to the confusion of VQA model on such instances. To solve this problem, we propose a novel training framework that explicitly encourages the VQA model to distinguish between the superficially similar instances. Specifically, for each training instance, we first construct a set that contains its superficially similar counterparts. Then we exploit the proposed distinguishing module to increase the distance between the instance and its counterparts in the answer space. In this way, the VQA model is forced to further focus on the other parts of the input beyond the question type, which helps to overcome the language priors. Experimental results show that our method achieves the state-of-the-art performance on VQA-CP v2. Codes are available at \href{//github.com/wyk-nku/Distinguishing-VQA.git}{Distinguishing-VQA}.

Contrastive learning has recently shown immense potential in unsupervised visual representation learning. Existing studies in this track mainly focus on intra-image invariance learning. The learning typically uses rich intra-image transformations to construct positive pairs and then maximizes agreement using a contrastive loss. The merits of inter-image invariance, conversely, remain much less explored. One major obstacle to exploit inter-image invariance is that it is unclear how to reliably construct inter-image positive pairs, and further derive effective supervision from them since no pair annotations are available. In this work, we present a comprehensive empirical study to better understand the role of inter-image invariance learning from three main constituting components: pseudo-label maintenance, sampling strategy, and decision boundary design. To facilitate the study, we introduce a unified and generic framework that supports the integration of unsupervised intra- and inter-image invariance learning. Through carefully-designed comparisons and analysis, multiple valuable observations are revealed: 1) online labels converge faster and perform better than offline labels; 2) semi-hard negative samples are more reliable and unbiased than hard negative samples; 3) a less stringent decision boundary is more favorable for inter-image invariance learning. With all the obtained recipes, our final model, namely InterCLR, shows consistent improvements over state-of-the-art intra-image invariance learning methods on multiple standard benchmarks. We hope this work will provide useful experience for devising effective unsupervised inter-image invariance learning. Code: //github.com/open-mmlab/mmselfsup.

Data Augmentation (DA) -- generating extra training samples beyond original training set -- has been widely-used in today's unbiased VQA models to mitigate the language biases. Current mainstream DA strategies are synthetic-based methods, which synthesize new samples by either editing some visual regions/words, or re-generating them from scratch. However, these synthetic samples are always unnatural and error-prone. To avoid this issue, a recent DA work composes new augmented samples by randomly pairing pristine images and other human-written questions. Unfortunately, to guarantee augmented samples have reasonable ground-truth answers, they manually design a set of heuristic rules for several question types, which extremely limits its generalization abilities. To this end, we propose a new Knowledge Distillation based Data Augmentation for VQA, dubbed KDDAug. Specifically, we first relax the requirements of reasonable image-question pairs, which can be easily applied to any question types. Then, we design a knowledge distillation (KD) based answer assignment to generate pseudo answers for all composed image-question pairs, which are robust to both in-domain and out-of-distribution settings. Since KDDAug is a model-agnostic DA strategy, it can be seamlessly incorporated into any VQA architectures. Extensive ablation studies on multiple backbones and benchmarks have demonstrated the effectiveness and generalization abilities of KDDAug.

People say, "A picture is worth a thousand words". Then how can we get the rich information out of the image? We argue that by using visual clues to bridge large pretrained vision foundation models and language models, we can do so without any extra cross-modal training. Thanks to the strong zero-shot capability of foundation models, we start by constructing a rich semantic representation of the image (e.g., image tags, object attributes / locations, captions) as a structured textual prompt, called visual clues, using a vision foundation model. Based on visual clues, we use large language model to produce a series of comprehensive descriptions for the visual content, which is then verified by the vision model again to select the candidate that aligns best with the image. We evaluate the quality of generated descriptions by quantitative and qualitative measurement. The results demonstrate the effectiveness of such a structured semantic representation.

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司