Decentralized learning is widely employed for collaboratively training models using distributed data over wireless networks. Existing decentralized learning methods primarily focus on training single-modal networks. For the decentralized multi-modal learning (DMML), the modality heterogeneity and the non-independent and non-identically distributed (non-IID) data across devices make it difficult for the training model to capture the correlated features across different modalities. Moreover, modality competition can result in training imbalance among different modalities, which can significantly impact the performance of DMML. To improve the training performance in the presence of non-IID data and modality heterogeneity, we propose a novel DMML with knowledge distillation (DMML-KD) framework, which decomposes the extracted feature into the modality-common and the modality-specific components. In the proposed DMML-KD, a generator is applied to learn the global conditional distribution of the modality-common features, thereby guiding the modality-common features of different devices towards the same distribution. Meanwhile, we propose to decrease the number of local iterations for the modalities with fast training speed in DMML-KD to address the imbalanced training. We design a balance metric based on the parameter variation to evaluate the training speed of different modalities in DMML-KD. Using this metric, we optimize the number of local iterations for different modalities on each device under the constraint of remaining energy on devices. Experimental results demonstrate that the proposed DMML-KD with training balance can effectively improve the training performance of DMML.
When implementing hierarchical federated learning over wireless networks, scalability assurance and the ability to handle both interference and device data heterogeneity are crucial. This work introduces a learning method designed to address these challenges, along with a scalable transmission scheme that efficiently uses a single wireless resource through over-the-air computation. To provide resistance against data heterogeneity, we employ gradient aggregations. Meanwhile, the impact of interference is minimized through optimized receiver normalizing factors. For this, we model a multi-cluster wireless network using stochastic geometry, and characterize the mean squared error of the aggregation estimations as a function of the network parameters. We show that despite the interference and the data heterogeneity, the proposed scheme achieves high learning accuracy and can significantly outperform the conventional hierarchical algorithm.
Graph outlier detection is a prominent task of research and application in the realm of graph neural networks. It identifies the outlier nodes that exhibit deviation from the majority in the graph. One of the fundamental challenges confronting supervised graph outlier detection algorithms is the prevalent issue of class imbalance, where the scarcity of outlier instances compared to normal instances often results in suboptimal performance. Conventional methods mitigate the imbalance by reweighting instances in the estimation of the loss function, assigning higher weights to outliers and lower weights to inliers. Nonetheless, these strategies are prone to overfitting and underfitting, respectively. Recently, generative models, especially diffusion models, have demonstrated their efficacy in synthesizing high-fidelity images. Despite their extraordinary generation quality, their potential in data augmentation for supervised graph outlier detection remains largely underexplored. To bridge this gap, we introduce GODM, a novel data augmentation for mitigating class imbalance in supervised Graph Outlier detection with latent Diffusion Models. Specifically, our proposed method consists of three key components: (1) Variantioanl Encoder maps the heterogeneous information inherent within the graph data into a unified latent space. (2) Graph Generator synthesizes graph data that are statistically similar to real outliers from latent space, and (3) Latent Diffusion Model learns the latent space distribution of real organic data by iterative denoising. Extensive experiments conducted on multiple datasets substantiate the effectiveness and efficiency of GODM. The case study further demonstrated the generation quality of our synthetic data. To foster accessibility and reproducibility, we encapsulate GODM into a plug-and-play package and release it at the Python Package Index (PyPI).
Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.