亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Whereas Laplacian and modularity based spectral clustering is apt to dense graphs, recent results show that for sparse ones, the non-backtracking spectrum is the best candidate to find assortative clusters of nodes. Here belief propagation in the sparse stochastic block model is derived with arbitrary given model parameters that results in a non-linear system of equations; with linear approximation, the spectrum of the non-backtracking matrix is able to specify the number $k$ of clusters. Then the model parameters themselves can be estimated by the EM algorithm. Bond percolation in the assortative model is considered in the following two senses: the within- and between-cluster edge probabilities decrease with the number of nodes and edges coming into existence in this way are retained with probability $\beta$. As a consequence, the optimal $k$ is the number of the structural real eigenvalues (greater than $\sqrt{c}$, where $c$ is the average degree) of the non-backtracking matrix of the graph. Assuming, these eigenvalues $\mu_1 >\dots > \mu_k$ are distinct, the multiple phase transitions obtained for $\beta$ are $\beta_i =\frac{c}{\mu_i^2}$; further, at $\beta_i$ the number of detectable clusters is $i$, for $i=1,\dots ,k$. Inflation-deflation techniques are also discussed to classify the nodes themselves, which can be the base of the sparse spectral clustering.

相關內容

A rigidity circuit (in 2D) is a minimal dependent set in the rigidity matroid, i.e. a minimal graph supporting a non-trivial stress in any generic placement of its vertices in $\mathbb R^2$. Any rigidity circuit on $n\geq 5$ vertices can be obtained from rigidity circuits on a fewer number of vertices by applying the combinatorial resultant (CR) operation. The inverse operation is called a combinatorial resultant decomposition (CR-decomp). Any rigidity circuit on $n\geq 5$ vertices can be successively decomposed into smaller circuits, until the complete graphs $K_4$ are reached. This sequence of CR-decomps has the structure of a rooted binary tree called the combinatorial resultant tree (CR-tree). A CR-tree encodes an elimination strategy for computing circuit polynomials via Sylvester resultants. Different CR-trees lead to elimination strategies that can vary greatly in time and memory consumption. It is an open problem to establish criteria for optimal CR-trees, or at least to characterize those CR-trees that lead to good elimination strategies. In [12] we presented an algorithm for enumerating CR-trees where we give the algorithms for decomposing 3-connected rigidity circuits in polynomial time. In this paper we focus on those circuits that are not 3-connected, which we simply call 2-connected. In order to enumerate CR-decomps of 2-connected circuits $G$, a brute force exp-time search has to be performed among the subgraphs induced by the subsets of $V(G)$. This exp-time bottleneck is not present in the 3-connected case. In this paper we will argue that we do not have to account for all possible CR-decomps of 2-connected rigidity circuits to find a good elimination strategy; we only have to account for those CR-decomps that are a 2-split, all of which can be enumerated in polynomial time. We present algorithms and computational evidence in support of this heuristic.

Assessing and comparing the security level of different voting systems is non-trivial as the technical means provided for and societal assumptions made about various systems differ significantly. However, trust assumptions concerning the involved parties are present for all voting systems and can be used as a basis for comparison. This paper discusses eight concrete voting systems with different properties, 12 types of parties involved, and seven general security goals set for voting. The emerging trust relations are assessed for their criticality, and the result is used for comparison of the considered systems.

Recent span-based joint extraction models have demonstrated significant advantages in both entity recognition and relation extraction. These models treat text spans as candidate entities, and span pairs as candidate relationship tuples, achieving state-of-the-art results on datasets like ADE. However, these models encounter a significant number of non-entity spans or irrelevant span pairs during the tasks, impairing model performance significantly. To address this issue, this paper introduces a span-based multitask entity-relation joint extraction model. This approach employs the multitask learning to alleviate the impact of negative samples on entity and relation classifiers. Additionally, we leverage the Intersection over Union(IoU) concept to introduce the positional information into the entity classifier, achieving a span boundary detection. Furthermore, by incorporating the entity Logits predicted by the entity classifier into the embedded representation of entity pairs, the semantic input for the relation classifier is enriched. Experimental results demonstrate that our proposed SpERT.MT model can effectively mitigate the adverse effects of excessive negative samples on the model performance. Furthermore, the model demonstrated commendable F1 scores of 73.61\%, 53.72\%, and 83.72\% on three widely employed public datasets, namely CoNLL04, SciERC, and ADE, respectively.

The problem of optimal recovering high-order mixed derivatives of bivariate functions with finite smoothness is studied. On the basis of the truncation method, an algorithm for numerical differentiation is constructed, which is order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information.

We study an optimal control problem governed by elliptic PDEs with interface, which the control acts on the interface. Due to the jump of the coefficient across the interface and the control acting on the interface, the regularity of solution of the control problem is limited on the whole domain, but smoother on subdomains. The control function with pointwise inequality constraints is served as the flux jump condition which we called Neumann interface control. We use a simple uniform mesh that is independent of the interface. The standard linear finite element method can not achieve optimal convergence when the uniform mesh is used. Therefore the state and adjoint state equations are discretized by piecewise linear immersed finite element method (IFEM). While the accuracy of the piecewise constant approximation of the optimal control on the interface is improved by a postprocessing step which possesses superconvergence properties; as well as the variational discretization concept for the optimal control is used to improve the error estimates. Optimal error estimates for the control, suboptimal error estimates for state and adjoint state are derived. Numerical examples with and without constraints are provided to illustrate the effectiveness of the proposed scheme and correctness of the theoretical analysis.

When faced with a constant target density, geodesic slice sampling on the sphere simplifies to a geodesic random walk. We prove that this random walk is Wasserstein contractive and that its contraction rate stabilizes with increasing dimension instead of deteriorating arbitrarily far. This demonstrates that the performance of geodesic slice sampling on the sphere can be entirely robust against dimension-increases, which had not been known before. Our result is also of interest due to its implications regarding the potential for dimension-independent performance by Gibbsian polar slice sampling, which is an MCMC method on $\mathbb{R}^d$ that implicitly uses geodesic slice sampling on the sphere within its transition mechanism.

Complex networks are used to model many real-world systems. However, the dimensionality of these systems can make them challenging to analyze. Dimensionality reduction techniques like POD can be used in such cases. However, these models are susceptible to perturbations in the input data. We propose an algorithmic framework that combines techniques from pattern recognition (PR) and stochastic filtering theory to enhance the output of such models. The results of our study show that our method can improve the accuracy of the surrogate model under perturbed inputs. Deep Neural Networks (DNNs) are susceptible to adversarial attacks. However, recent research has revealed that Neural Ordinary Differential Equations (neural ODEs) exhibit robustness in specific applications. We benchmark our algorithmic framework with the neural ODE-based approach as a reference.

We study the design of grading contests between agents with private information about their abilities under the assumption that the value of a grade is determined by the information it reveals about the agent's productivity. Towards the goal of identifying the effort-maximizing grading contest, we study the effect of increasing prizes and increasing competition on effort and find that the effects depend qualitatively on the distribution of abilities in the population. Consequently, while the optimal grading contest always uniquely identifies the best performing agent, it may want to pool or separate the remaining agents depending upon the distribution. We identify sufficient conditions under which a rank-revealing grading contest, a leaderboard-with-cutoff type grading contest, and a coarse grading contest with at most three grades are optimal. In the process, we also identify distributions under which there is a monotonic relationship between the informativeness of a grading scheme and the effort induced by it.

Conventional neural network elastoplasticity models are often perceived as lacking interpretability. This paper introduces a two-step machine-learning approach that returns mathematical models interpretable by human experts. In particular, we introduce a surrogate model where yield surfaces are expressed in terms of a set of single-variable feature mappings obtained from supervised learning. A postprocessing step is then used to re-interpret the set of single-variable neural network mapping functions into mathematical form through symbolic regression. This divide-and-conquer approach provides several important advantages. First, it enables us to overcome the scaling issue of symbolic regression algorithms. From a practical perspective, it enhances the portability of learned models for partial differential equation solvers written in different programming languages. Finally, it enables us to have a concrete understanding of the attributes of the materials, such as convexity and symmetries of models, through automated derivations and reasoning. Numerical examples have been provided, along with an open-source code to enable third-party validation.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司