Classical convergence analyses for optimization algorithms rely on the widely-adopted uniform smoothness assumption. However, recent experimental studies have demonstrated that many machine learning problems exhibit non-uniform smoothness, meaning the smoothness factor is a function of the model parameter instead of a universal constant. In particular, it has been observed that the smoothness grows with respect to the gradient norm along the training trajectory. Motivated by this phenomenon, the recently introduced $(L_0, L_1)$-smoothness is a more general notion, compared to traditional $L$-smoothness, that captures such positive relationship between smoothness and gradient norm. Under this type of non-uniform smoothness, existing literature has designed stochastic first-order algorithms by utilizing gradient clipping techniques to obtain the optimal $\mathcal{O}(\epsilon^{-3})$ sample complexity for finding an $\epsilon$-approximate first-order stationary solution. Nevertheless, the studies of quasi-Newton methods are still lacking. Considering higher accuracy and more robustness for quasi-Newton methods, in this paper we propose a fast stochastic quasi-Newton method when there exists non-uniformity in smoothness. Leveraging gradient clipping and variance reduction, our algorithm can achieve the best-known $\mathcal{O}(\epsilon^{-3})$ sample complexity and enjoys convergence speedup with simple hyperparameter tuning. Our numerical experiments show that our proposed algorithm outperforms the state-of-the-art approaches.
Matrix-vector multiplication forms the basis of many iterative solution algorithms and as such is an important algorithm also for hierarchical matrices. However, due to its low computational intensity, its performance is typically limited by the available memory bandwidth. By optimizing the storage representation of the data within such matrices, this limitation can be lifted and the performance increased. This applies not only to hierarchical matrices but for also for other low-rank approximation schemes, e.g. block low-rank matrices.
Influence functions (IFs) elucidate how training data changes model behavior. However, the increasing size and non-convexity in large-scale models make IFs inaccurate. We suspect that the fragility comes from the first-order approximation which may cause nuisance changes in parameters irrelevant to the examined data. However, simply computing influence from the chosen parameters can be misleading, as it fails to nullify the hidden effects of unselected parameters on the analyzed data. Thus, our approach introduces generalized IFs, precisely estimating target parameters' influence while nullifying nuisance gradient changes on fixed parameters. We identify target update parameters closely associated with the input data by the output- and gradient-based parameter selection methods. We verify the generalized IFs with various alternatives of IFs on the class removal and label change tasks. The experiments align with the "less is more" philosophy, demonstrating that updating only 5\% of the model produces more accurate results than other influence functions across all tasks. We believe our proposal works as a foundational tool for optimizing models, conducting data analysis, and enhancing AI interpretability beyond the limitation of IFs. Codes are available at //github.com/hslyu/GIF.
Open Modification Search (OMS) is a promising algorithm for mass spectrometry analysis that enables the discovery of modified peptides. However, OMS encounters challenges as it exponentially extends the search scope. Existing OMS accelerators either have limited parallelism or struggle to scale effectively with growing data volumes. In this work, we introduce an OMS accelerator utilizing multi-level-cell (MLC) RRAM memory to enhance storage capacity by 3x. Through in-memory computing, we achieve up to 77x faster data processing with two to three orders of magnitude better energy efficiency. Testing was done on a fabricated MLC RRAM chip. We leverage hyperdimensional computing to tolerate up to 10% memory errors while delivering massive parallelism in hardware.
Testing differences in mean vectors is a fundamental task in the analysis of high-dimensional compositional data. Existing methods may suffer from low power if the underlying signal pattern is in a situation that does not favor the deployed test. In this work, we develop two-sample power-enhanced mean tests for high-dimensional compositional data based on the combination of $p$-values, which integrates strengths from two popular types of tests: the maximum-type test and the quadratic-type test. We provide rigorous theoretical guarantees on the proposed tests, showing accurate Type-I error rate control and enhanced testing power. Our method boosts the testing power towards a broader alternative space, which yields robust performance across a wide range of signal pattern settings. Our theory also contributes to the literature on power enhancement and Gaussian approximation for high-dimensional hypothesis testing. We demonstrate the performance of our method on both simulated data and real-world microbiome data, showing that our proposed approach improves the testing power substantially compared to existing methods.
We present P2PL, a practical multi-device peer-to-peer deep learning algorithm that, unlike the federated learning paradigm, does not require coordination from edge servers or the cloud. This makes P2PL well-suited for the sheer scale of beyond-5G computing environments like smart cities that otherwise create range, latency, bandwidth, and single point of failure issues for federated approaches. P2PL introduces max norm synchronization to catalyze training, retains on-device deep model training to preserve privacy, and leverages local inter-device communication to implement distributed consensus. Each device iteratively alternates between two phases: 1) on-device learning and 2) peer-to-peer cooperation where they combine model parameters with nearby devices. We empirically show that all participating devices achieve the same test performance attained by federated and centralized training -- even with 100 devices and relaxed singly stochastic consensus weights. We extend these experimental results to settings with diverse network topologies, sparse and intermittent communication, and non-IID data distributions.
We consider a missing data problem in the context of automatic segmentation methods for Magnetic Resonance Imaging (MRI) brain scans. Usually, automated MRI scan segmentation is based on multiple scans (e.g., T1-weighted, T2-weighted, T1CE, FLAIR). However, quite often a scan is blurry, missing or otherwise unusable. We investigate the question whether a missing scan can be synthesized. We exemplify that this is in principle possible by synthesizing a T2-weighted scan from a given T1-weighted scan. Our first aim is to compute a picture that resembles the missing scan closely, measured by average mean squared error (MSE). We develop/use several methods for this, including a random baseline approach, a clustering-based method and pixel-to-pixel translation method by Isola et al. (Pix2Pix) which is based on conditional GANs. The lowest MSE is achieved by our clustering-based method. Our second aim is to compare the methods with respect to the effect that using the synthesized scan has on the segmentation process. For this, we use a DeepMedic model trained with the four input scan modalities named above. We replace the T2-weighted scan by the synthesized picture and evaluate the segmentations with respect to the tumor identification, using Dice scores as numerical evaluation. The evaluation shows that the segmentation works well with synthesized scans (in particular, with Pix2Pix methods) in many cases.
Multi-modal Emotion Recognition in Conversation (MERC) has received considerable attention in various fields, e.g., human-computer interaction and recommendation systems. Most existing works perform feature disentanglement and fusion to extract emotional contextual information from multi-modal features and emotion classification. After revisiting the characteristic of MERC, we argue that long-range contextual semantic information should be extracted in the feature disentanglement stage and the inter-modal semantic information consistency should be maximized in the feature fusion stage. Inspired by recent State Space Models (SSMs), Mamba can efficiently model long-distance dependencies. Therefore, in this work, we fully consider the above insights to further improve the performance of MERC. Specifically, on the one hand, in the feature disentanglement stage, we propose a Broad Mamba, which does not rely on a self-attention mechanism for sequence modeling, but uses state space models to compress emotional representation, and utilizes broad learning systems to explore the potential data distribution in broad space. Different from previous SSMs, we design a bidirectional SSM convolution to extract global context information. On the other hand, we design a multi-modal fusion strategy based on probability guidance to maximize the consistency of information between modalities. Experimental results show that the proposed method can overcome the computational and memory limitations of Transformer when modeling long-distance contexts, and has great potential to become a next-generation general architecture in MERC.
Hyperspectral Imaging (HSI) serves as an important technique in remote sensing. However, high dimensionality and data volume typically pose significant computational challenges. Band selection is essential for reducing spectral redundancy in hyperspectral imagery while retaining intrinsic critical information. In this work, we propose a novel hyperspectral band selection model by decomposing the data into a low-rank and smooth component and a sparse one. In particular, we develop a generalized 3D total variation (G3DTV) by applying the $\ell_1^p$-norm to derivatives to preserve spatial-spectral smoothness. By employing the alternating direction method of multipliers (ADMM), we derive an efficient algorithm, where the tensor low-rankness is implied by the tensor CUR decomposition. We demonstrate the effectiveness of the proposed approach through comparisons with various other state-of-the-art band selection techniques using two benchmark real-world datasets. In addition, we provide practical guidelines for parameter selection in both noise-free and noisy scenarios.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.