亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we design a novel Bregman gradient policy optimization framework for reinforcement learning based on Bregman divergences and momentum techniques. Specifically, we propose a Bregman gradient policy optimization (BGPO) algorithm based on the basic momentum technique and mirror descent iteration. At the same time, we present an accelerated Bregman gradient policy optimization (VR-BGPO) algorithm based on a momentum variance-reduced technique. Moreover, we introduce a convergence analysis framework for our Bregman gradient policy optimization under the nonconvex setting. Specifically, we prove that BGPO achieves the sample complexity of $\tilde{O}(\epsilon^{-4})$ for finding $\epsilon$-stationary point only requiring one trajectory at each iteration, and VR-BGPO reaches the best known sample complexity of $\tilde{O}(\epsilon^{-3})$ for finding an $\epsilon$-stationary point, which also only requires one trajectory at each iteration. In particular, by using different Bregman divergences, our methods unify many existing policy optimization algorithms and their new variants such as the existing (variance-reduced) policy gradient algorithms and (variance-reduced) natural policy gradient algorithms. Extensive experimental results on multiple reinforcement learning tasks demonstrate the efficiency of our new algorithms.

相關內容

The task of approximating an arbitrary convex function arises in several learning problems such as convex regression, learning with a difference of convex (DC) functions, and approximating Bregman divergences. In this paper, we show how a broad class of convex function learning problems can be solved via a 2-block ADMM approach, where updates for each block can be computed in closed form. For the task of convex Lipschitz regression, we establish that our proposed algorithm converges with iteration complexity of $ O(n\sqrt{d}/\epsilon)$ for a dataset $ X \in \mathbb R^{n\times d}$ and $\epsilon > 0$. Combined with per-iteration computation complexity, our method converges with the rate $O(n^3 d^{1.5}/\epsilon+n^2 d^{2.5}/\epsilon+n d^3/\epsilon)$. This new rate improves the state of the art rate of $O(n^5d^2/\epsilon)$ available by interior point methods if $d = o( n^4)$. Further we provide similar solvers for DC regression and Bregman divergence learning. Unlike previous approaches, our method is amenable to the use of GPUs. We demonstrate on regression and metric learning experiments that our approach is up to 30 times faster than the existing method, and produces results that are comparable to state-of-the-art.

Offline policy learning (OPL) leverages existing data collected a priori for policy optimization without any active exploration. Despite the prevalence and recent interest in this problem, its theoretical and algorithmic foundations in function approximation settings remain under-developed. In this paper, we consider this problem on the axes of distributional shift, optimization, and generalization in offline contextual bandits with neural networks. In particular, we propose a provably efficient offline contextual bandit with neural network function approximation that does not require any functional assumption on the reward. We show that our method provably generalizes over unseen contexts under a milder condition for distributional shift than the existing OPL works. Notably, unlike any other OPL method, our method learns from the offline data in an online manner using stochastic gradient descent, allowing us to leverage the benefits of online learning into an offline setting. Moreover, we show that our method is more computationally efficient and has a better dependence on the effective dimension of the neural network than an online counterpart. Finally, we demonstrate the empirical effectiveness of our method in a range of synthetic and real-world OPL problems.

The StochAstic Recursive grAdient algoritHm (SARAH) algorithm is a variance reduced variant of the Stochastic Gradient Descent (SGD) algorithm that needs a gradient of the objective function from time to time. In this paper, we remove the necessity of a full gradient computation. This is achieved by using a randomized reshuffling strategy and aggregating stochastic gradients obtained in each epoch. The aggregated stochastic gradients serve as an estimate of a full gradient in the SARAH algorithm. We provide a theoretical analysis of the proposed approach and conclude the paper with numerical experiments that demonstrate the efficiency of this approach.

A fascinating aspect of nature lies in its ability to produce a large and diverse collection of organisms that are all high-performing in their niche. By contrast, most AI algorithms focus on finding a single efficient solution to a given problem. Aiming for diversity in addition to performance is a convenient way to deal with the exploration-exploitation trade-off that plays a central role in learning. It also allows for increased robustness when the returned collection contains several working solutions to the considered problem, making it well-suited for real applications such as robotics. Quality-Diversity (QD) methods are evolutionary algorithms designed for this purpose. This paper proposes a novel algorithm, QD - PG , which combines the strength of Policy Gradient algorithms and Quality Diversity approaches to produce a collection of diverse and high-performing neural policies in continuous control environments. The main contribution of this work is the introduction of a Diversity Policy Gradient (DPG) that exploits information at the time-step level to thrive policies towards more diversity in a sample-efficient manner. Specifically, QD - PG selects neural controllers from a MAP - E lites grid and uses two gradient-based mutation operators to improve both quality and diversity, resulting in stable population updates. Our results demonstrate that QD - PG generates collections of diverse solutions that solve challenging exploration and control problems while being two orders of magnitude more sample-efficient than its evolutionary competitors.

We describe the first gradient methods on Riemannian manifolds to achieve accelerated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian gradient and Hessian of the cost function, these methods find approximate first-order critical points faster than regular gradient descent. A randomized version also finds approximate second-order critical points. Both the algorithms and their analyses build extensively on existing work in the Euclidean case. The basic operation consists in running the Euclidean accelerated gradient descent method (appropriately safe-guarded against non-convexity) in the current tangent space, then moving back to the manifold and repeating. This requires lifting the cost function from the manifold to the tangent space, which can be done for example through the Riemannian exponential map. For this approach to succeed, the lifted cost function (called the pullback) must retain certain Lipschitz properties. As a contribution of independent interest, we prove precise claims to that effect, with explicit constants. Those claims are affected by the Riemannian curvature of the manifold, which in turn affects the worst-case complexity bounds for our optimization algorithms.

This paper studies a distributed policy gradient in collaborative multi-agent reinforcement learning (MARL), where agents over a communication network aim to find the optimal policy to maximize the average of all agents' local returns. Due to the non-concave performance function of policy gradient, the existing distributed stochastic optimization methods for convex problems cannot be directly used for policy gradient in MARL. This paper proposes a distributed policy gradient with variance reduction and gradient tracking to address the high variances of policy gradient, and utilizes importance weight to solve the non-stationary problem in the sampling process. We then provide an upper bound on the mean-squared stationary gap, which depends on the number of iterations, the mini-batch size, the epoch size, the problem parameters, and the network topology. We further establish the sample and communication complexity to obtain an $\epsilon$-approximate stationary point. Numerical experiments on the control problem in MARL are performed to validate the effectiveness of the proposed algorithm.

We establish generalization error bounds for stochastic gradient Langevin dynamics (SGLD) with constant learning rate under the assumptions of dissipativity and smoothness, a setting that has received increased attention in the sampling/optimization literature. Unlike existing bounds for SGLD in non-convex settings, ours are time-independent and decay to zero as the sample size increases. Using the framework of uniform stability, we establish time-independent bounds by exploiting the Wasserstein contraction property of the Langevin diffusion, which also allows us to circumvent the need to bound gradients using Lipschitz-like assumptions. Our analysis also supports variants of SGLD that use different discretization methods, incorporate Euclidean projections, or use non-isotropic noise.

Policy gradient (PG) methods are popular reinforcement learning (RL) methods where a baseline is often applied to reduce the variance of gradient estimates. In multi-agent RL (MARL), although the PG theorem can be naturally extended, the effectiveness of multi-agent PG (MAPG) methods degrades as the variance of gradient estimates increases rapidly with the number of agents. In this paper, we offer a rigorous analysis of MAPG methods by, firstly, quantifying the contributions of the number of agents and agents' explorations to the variance of MAPG estimators. Based on this analysis, we derive the optimal baseline (OB) that achieves the minimal variance. In comparison to the OB, we measure the excess variance of existing MARL algorithms such as vanilla MAPG and COMA. Considering using deep neural networks, we also propose a surrogate version of OB, which can be seamlessly plugged into any existing PG methods in MARL. On benchmarks of Multi-Agent MuJoCo and StarCraft challenges, our OB technique effectively stabilises training and improves the performance of multi-agent PPO and COMA algorithms by a significant margin.

The difficulty in specifying rewards for many real-world problems has led to an increased focus on learning rewards from human feedback, such as demonstrations. However, there are often many different reward functions that explain the human feedback, leaving agents with uncertainty over what the true reward function is. While most policy optimization approaches handle this uncertainty by optimizing for expected performance, many applications demand risk-averse behavior. We derive a novel policy gradient-style robust optimization approach, PG-BROIL, that optimizes a soft-robust objective that balances expected performance and risk. To the best of our knowledge, PG-BROIL is the first policy optimization algorithm robust to a distribution of reward hypotheses which can scale to continuous MDPs. Results suggest that PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse and outperforms state-of-the-art imitation learning algorithms when learning from ambiguous demonstrations by hedging against uncertainty, rather than seeking to uniquely identify the demonstrator's reward function.

Eligibility traces are an effective technique to accelerate reinforcement learning by smoothly assigning credit to recently visited states. However, their online implementation is incompatible with modern deep reinforcement learning algorithms, which rely heavily on i.i.d. training data and offline learning. We utilize an efficient, recursive method for computing {\lambda}-returns offline that can provide the benefits of eligibility traces to any value-estimation or actor-critic method. We demonstrate how our method can be combined with DQN, DRQN, and A3C to greatly enhance the learning speed of these algorithms when playing Atari 2600 games, even under partial observability. Our results indicate several-fold improvements to sample efficiency on Seaquest and Q*bert. We expect similar results for other algorithms and domains not considered here, including those with continuous actions.

北京阿比特科技有限公司