亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The aim of this article is to propose a new reduced-order modelling approach for parametric eigenvalue problems arising in electronic structure calculations. Namely, we develop nonlinear reduced basis techniques for the approximation of parametric eigenvalue problems inspired from quantum chemistry applications. More precisely, we consider here a one-dimensional model which is a toy model for the computation of the electronic ground state wavefunction of a system of electrons within a molecule, solution to the many-body electronic Schr\"odinger equation, where the varying parameters are the positions of the nuclei in the molecule. We estimate the decay rate of the Kolmogorov n-width of the set of solutions for this parametric problem in several settings, including the standard L2-norm as well as with distances based on optimal transport. The fact that the latter decays much faster than in the traditional L2-norm setting motivates us to propose a practical nonlinear reduced basis method, which is based on an offline greedy algorithm, and an efficient stochastic energy minimization in the online phase. We finally provide numerical results illustrating the capabilities of the method and good approximation properties, both in the offline and the online phase.

相關內容

We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties. Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels. Multichannel image data can be obtained by lifting the image into a higher dimensional feature space using specific multichannel filtering or may already be provided by the imaging modality under consideration, such as an RGB image or multimodal medical data. Experimental results show that the proposed method performs well in various scenarios. In particular, promising results are presented for two medical applications involving classification of brain abscess and tumor growth, respectively. As main theoretical contributions, we prove the existence of global minimizers of the proposed energy functional and show its stability and convergence with respect to noisy inputs. In particular, these results also apply to the special case of binary segmentation, and these results are also novel in this particular situation.

Stochastic memoization is a higher-order construct of probabilistic programming languages that is key in Bayesian nonparametrics, a modular approach that allows us to extend models beyond their parametric limitations and compose them in an elegant and principled manner. Stochastic memoization is simple and useful in practice, but semantically elusive, particularly regarding dataflow transformations. As the naive implementation resorts to the state monad, which is not commutative, it is not clear if stochastic memoization preserves the dataflow property -- i.e., whether we can reorder the lines of a program without changing its semantics, provided the dataflow graph is preserved. In this paper, we give an operational and categorical semantics to stochastic memoization and name generation in the context of a minimal probabilistic programming language, for a restricted class of functions. Our contribution is a first model of stochastic memoization of constant Bernoulli functions with a non-enumerable type, which validates data flow transformations, bridging the gap between traditional probability theory and higher-order probability models. Our model uses a presheaf category and a novel probability monad on it.

This paper presents a reduced algorithm to the classical projection method for the solution of $d$-dimensional quasiperiodic problems, particularly Schr\"{o}dinger eigenvalue problems. Using the properties of the Schr\"{o}dinger operator in higher-dimensional space via a projection matrix of size $d\times n$, we rigorously prove that the generalized Fourier coefficients of the eigenfunctions decay exponentially along a fixed direction associated with the projection matrix. An efficient reduction strategy of the basis space is then proposed to reduce the degrees of freedom from $O(N^{n})$ to $O(N^{n-d}D^d)$, where $N$ is the number of Fourier grids in one dimension and the truncation coefficient $D$ is much less than $N$. Correspondingly, the computational complexity of the proposed algorithm for solving the first $k$ eigenpairs using the Krylov subspace method decreases from $O(kN^{2n})$ to $O(kN^{2(n-d)}D^{2d})$. Rigorous error estimates of the proposed reduced projection method are provided, indicating that a small $D$ is sufficient to achieve the same level of accuracy as the classical projection method. We present numerical examples of quasiperiodic Schr\"{o}dinger eigenvalue problems in one and two dimensions to demonstrate the accuracy and efficiency of our proposed method.

We discuss techniques of estimation and inference for nonlinear cohort panels with learning from experience, showing, inter alia, the consistency and asymptotic normality of the nonlinear least squares estimator employed in the seminal paper by Malmendier and Nagel (2016). Potential pitfalls for hypothesis testing are identified and solutions proposed. Monte Carlo simulations verify the properties of the estimator and corresponding test statistics in finite samples, while an application to a panel of survey expectations demonstrates the usefulness of the theory developed.

We present a general theory to quantify the uncertainty from imposing structural assumptions on the second-order structure of nonstationary Hilbert space-valued processes, which can be measured via functionals of time-dependent spectral density operators. The second-order dynamics are well-known to be elements of the space of trace-class operators, the latter is a Banach space of type 1 and of cotype 2, which makes the development of statistical inference tools more challenging. A part of our contribution is to obtain a weak invariance principle as well as concentration inequalities for (functionals of) the sequential time-varying spectral density operator. In addition, we introduce deviation measures in the nonstationary context, and derive estimators that are asymptotically pivotal. We then apply this framework and propose statistical methodology to investigate the validity of structural assumptions for nonstationary response surface data, such as low-rank assumptions in the context of time-varying dynamic fPCA and principle separable component analysis, deviations from stationarity with respect to the square root distance, and deviations from zero functional canonical coherency.

A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.

Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.

This work uses the entropy-regularised relaxed stochastic control perspective as a principled framework for designing reinforcement learning (RL) algorithms. Herein agent interacts with the environment by generating noisy controls distributed according to the optimal relaxed policy. The noisy policies on the one hand, explore the space and hence facilitate learning but, on the other hand, introduce bias by assigning a positive probability to non-optimal actions. This exploration-exploitation trade-off is determined by the strength of entropy regularisation. We study algorithms resulting from two entropy regularisation formulations: the exploratory control approach, where entropy is added to the cost objective, and the proximal policy update approach, where entropy penalises policy divergence between consecutive episodes. We focus on the finite horizon continuous-time linear-quadratic (LQ) RL problem, where a linear dynamics with unknown drift coefficients is controlled subject to quadratic costs. In this setting, both algorithms yield a Gaussian relaxed policy. We quantify the precise difference between the value functions of a Gaussian policy and its noisy evaluation and show that the execution noise must be independent across time. By tuning the frequency of sampling from relaxed policies and the parameter governing the strength of entropy regularisation, we prove that the regret, for both learning algorithms, is of the order $\mathcal{O}(\sqrt{N}) $ (up to a logarithmic factor) over $N$ episodes, matching the best known result from the literature.

Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.

When modelling discontinuities (interfaces) using the finite element method, the standard approach is to use a conforming finite-element mesh in which the mesh matches the interfaces. However, this approach can prove cumbersome if the geometry is complex, in particular in 3D. In this work, we develop an efficient technique for a non-conforming finite-element treatment of weak discontinuities by using laminated microstructures. The approach is inspired by the so-called composite voxel technique that has been developed for FFT-based spectral solvers in computational homogenization. The idea behind the method is rather simple. Each finite element that is cut by an interface is treated as a simple laminate with the volume fraction of the phases and the lamination orientation determined in terms of the actual geometrical arrangement of the interface within the element. The approach is illustrated by several computational examples relevant to the micromechanics of heterogeneous materials. Elastic and elastic-plastic materials at small and finite strain are considered in the examples. The performance of the proposed method is compared to two alternative, simple methods showing that the new approach is in most cases superior to them while maintaining the simplicity.

北京阿比特科技有限公司