亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A major challenge in the segmentation of medical images is the large inter- and intra-observer variability in annotations provided by multiple experts. To address this challenge, we propose a novel method for multi-expert prediction using diffusion models. Our method leverages the diffusion-based approach to incorporate information from multiple annotations and fuse it into a unified segmentation map that reflects the consensus of multiple experts. We evaluate the performance of our method on several datasets of medical segmentation annotated by multiple experts and compare it with state-of-the-art methods. Our results demonstrate the effectiveness and robustness of the proposed method. Our code is publicly available at //github.com/tomeramit/Annotator-Consensus-Prediction.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 位置嵌入 · Networking · PDE · 雅克比 ·
2023 年 8 月 7 日

This work extends the paradigm of evolutional deep neural networks (EDNNs) to solving parametric time-dependent partial differential equations (PDEs) on domains with geometric structure. By introducing positional embeddings based on eigenfunctions of the Laplace-Beltrami operator, geometric properties are encoded intrinsically and Dirichlet, Neumann and periodic boundary conditions of the PDE solution are enforced directly through the neural network architecture. The proposed embeddings lead to improved error convergence for static PDEs and extend EDNNs towards computational domains of realistic complexity. Several steps are taken to improve performance of EDNNs: Solving the EDNN update equation with a Krylov solver avoids the explicit assembly of Jacobians and enables scaling to larger neural networks. Computational efficiency is further improved by an ad-hoc active sampling scheme that uses the PDE dynamics to effectively sample collocation points. A modified linearly implicit Rosenbrock method is proposed to alleviate the time step requirements of stiff PDEs. Lastly, a completely training-free approach, which automatically enforces initial conditions and only requires time integration, is compared against EDNNs that are trained on the initial conditions. We report results for the Korteweg-de Vries equation, a nonlinear heat equation and (nonlinear) advection-diffusion problems on domains with and without holes and various boundary conditions, to demonstrate the effectiveness of the method. The numerical results highlight EDNNs as a promising surrogate model for parametrized PDEs with slow decaying Kolmogorov n-width.

Automatic radiology report generation is challenging as medical images or reports are usually similar to each other due to the common content of anatomy. This makes a model hard to capture the uniqueness of individual images and is prone to producing undesired generic or mismatched reports. This situation calls for learning more discriminative features that could capture even fine-grained mismatches between images and reports. To achieve this, this paper proposes a novel framework to learn discriminative image and report features by distinguishing them from their closest peers, i.e., hard negatives. Especially, to attain more discriminative features, we gradually raise the difficulty of such a learning task by creating increasingly hard negative reports for each image in the feature space during training, respectively. By treating the increasingly hard negatives as auxiliary variables, we formulate this process as a min-max alternating optimisation problem. At each iteration, conditioned on a given set of hard negative reports, image and report features are learned as usual by minimising the loss functions related to report generation. After that, a new set of harder negative reports will be created by maximising a loss reflecting image-report alignment. By solving this optimisation, we attain a model that can generate more specific and accurate reports. It is noteworthy that our framework enhances discriminative feature learning without introducing extra network weights. Also, in contrast to the existing way of generating hard negatives, our framework extends beyond the granularity of the dataset by generating harder samples out of the training set. Experimental study on benchmark datasets verifies the efficacy of our framework and shows that it can serve as a plug-in to readily improve existing medical report generation models.

The application of Artificial Intelligence (AI) in healthcare has been revolutionary, especially with the recent advancements in transformer-based Large Language Models (LLMs). However, the task of understanding unstructured electronic medical records remains a challenge given the nature of the records (e.g., disorganization, inconsistency, and redundancy) and the inability of LLMs to derive reasoning paradigms that allow for comprehensive understanding of medical variables. In this work, we examine the power of coupling symbolic reasoning with language modeling toward improved understanding of unstructured clinical texts. We show that such a combination improves the extraction of several medical variables from unstructured records. In addition, we show that the state-of-the-art commercially-free LLMs enjoy retrieval capabilities comparable to those provided by their commercial counterparts. Finally, we elaborate on the need for LLM steering through the application of symbolic reasoning as the exclusive use of LLMs results in the lowest performance.

Infrared and visible image fusion has gradually proved to be a vital fork in the field of multi-modality imaging technologies. In recent developments, researchers not only focus on the quality of fused images but also evaluate their performance in downstream tasks. Nevertheless, the majority of methods seldom put their eyes on the mutual learning from different modalities, resulting in fused images lacking significant details and textures. To overcome this issue, we propose an interactive graph neural network (GNN)-based architecture between cross modality for fusion, called IGNet. Specifically, we first apply a multi-scale extractor to achieve shallow features, which are employed as the necessary input to build graph structures. Then, the graph interaction module can construct the extracted intermediate features of the infrared/visible branch into graph structures. Meanwhile, the graph structures of two branches interact for cross-modality and semantic learning, so that fused images can maintain the important feature expressions and enhance the performance of downstream tasks. Besides, the proposed leader nodes can improve information propagation in the same modality. Finally, we merge all graph features to get the fusion result. Extensive experiments on different datasets (TNO, MFNet and M3FD) demonstrate that our IGNet can generate visually appealing fused images while scoring averagely 2.59% [email protected] and 7.77% mIoU higher in detection and segmentation than the compared state-of-the-art methods. The source code of the proposed IGNet can be available at //github.com/lok-18/IGNet.

One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司