We consider the problem of third-person imitation learning with the additional challenge that the learner must select the perspective from which they observe the expert. In our setting, each perspective provides only limited information about the expert's behavior, and the learning agent must carefully select and combine information from different perspectives to achieve competitive performance. This setting is inspired by real-world imitation learning applications, e.g., in robotics, a robot might observe a human demonstrator via camera and receive information from different perspectives depending on the camera's position. We formalize the aforementioned active third-person imitation learning problem, theoretically analyze its characteristics, and propose a generative adversarial network-based active learning approach. Empirically, we demstrate that our proposed approach can effectively learn from expert demonstrations and explore the importance of different architectural choices for the learner's performance.
We lay out a model of games with imperfect information that features explicit communication actions, by which the entire observation history of a player is revealed to another player. Such full-information protocols are common in asynchronous distributed systems; here, we consider a synchronous setting with a single active player who may communicate with multiple passive observers in an indeterminate environment. We present a procedure for solving the basic strategy-synthesis problem under regular winning conditions. We present our solution in an abstract framework of games with imperfect information and we split the proof in two conceptual parts: (i) a generic reduction schema from imperfect-information to perfect-information games, and (ii) a specific construction for full-information protocols that satisfies the requirement of the reduction schema. Furthermore we show that the number of passive observers induces a strict hierarchy, both in terms of expressiveness and complexity: with n observers, a full-information protocol can express indistinguishability relations (defining imperfect information for the player in the protocol) that are not expressible with n-1 observers, and the strategy-synthesis problem is (n+1)-EXPTIME-complete.
A fundamental problem in robust learning is asymmetry: a learner needs to correctly classify every one of exponentially-many perturbations that an adversary might make to a test-time natural example. In contrast, the attacker only needs to find one successful perturbation. Xiang et al.[2022] proposed an algorithm that in the context of patch attacks for image classification, reduces the effective number of perturbations from an exponential to a polynomial number of perturbations and learns using an ERM oracle. However, to achieve its guarantee, their algorithm requires the natural examples to be robustly realizable. This prompts the natural question; can we extend their approach to the non-robustly-realizable case where there is no classifier with zero robust error? Our first contribution is to answer this question affirmatively by reducing this problem to a setting in which an algorithm proposed by Feige et al.[2015] can be applied, and in the process extend their guarantees. Next, we extend our results to a multi-group setting and introduce a novel agnostic multi-robust learning problem where the goal is to learn a predictor that achieves low robust loss on a (potentially) rich collection of subgroups.
In decision-making guided by machine learning, decision-makers often take identical actions in contexts with identical predicted outcomes. Conformal prediction helps decision-makers quantify outcome uncertainty for actions, allowing for better risk management. Inspired by this perspective, we introduce self-consistent conformal prediction, which yields both Venn-Abers calibrated predictions and conformal prediction intervals that are valid conditional on actions prompted by model predictions. Our procedure can be applied post-hoc to any black-box predictor to provide rigorous, action-specific decision-making guarantees. Numerical experiments show our approach strikes a balance between interval efficiency and conditional validity.
We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.
A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.
Recent advances in representation learning have demonstrated an ability to represent information from different modalities such as video, text, and audio in a single high-level embedding vector. In this work we present a self-supervised learning framework that is able to learn a representation that captures finer levels of granularity across different modalities such as concepts or events represented by visual objects or spoken words. Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities. Beyond the shared embedding space, we propose a Cross-Modal Code Matching objective that forces the representations from different views (modalities) to have a similar distribution over the discrete embedding space such that cross-modal objects/actions localization can be performed without direct supervision. In our experiments we show that the proposed discretized multi-modal fine-grained representation (e.g., pixel/word/frame) can complement high-level summary representations (e.g., video/sentence/waveform) for improved performance on cross-modal retrieval tasks. We also observe that the discretized representation uses individual clusters to represent the same semantic concept across modalities.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.
Graph Convolutional Networks (GCNs) have received increasing attention in recent machine learning. How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly optimizing the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the GEneralized Multi-relational Graph Convolutional Networks (GEM-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge-base embedding methods, and goes beyond. Our theoretical analysis shows that GEM-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of GEM-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.