亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One of the growing trends in machine learning is the use of data generation techniques, since the performance of machine learning models is dependent on the quantity of the training dataset. However, in many medical applications, collecting large datasets is challenging due to resource constraints, which leads to overfitting and poor generalization. This paper introduces a novel method, Artificial Data Point Generation in Clustered Latent Space (AGCL), designed to enhance classification performance on small medical datasets through synthetic data generation. The AGCL framework involves feature extraction, K-means clustering, cluster evaluation based on a class separation metric, and the generation of synthetic data points from clusters with distinct class representations. This method was applied to Parkinson's disease screening, utilizing facial expression data, and evaluated across multiple machine learning classifiers. Experimental results demonstrate that AGCL significantly improves classification accuracy compared to baseline, GN and kNNMTD. AGCL achieved the highest overall test accuracy of 83.33% and cross-validation accuracy of 90.90% in majority voting over different emotions, confirming its effectiveness in augmenting small datasets.

相關內容

Achieving a provable exponential quantum speedup for an important machine learning task has been a central research goal since the seminal HHL quantum algorithm for solving linear systems and the subsequent quantum recommender systems algorithm by Kerenidis and Prakash. These algorithms were initially believed to be strong candidates for exponential speedups, but a lower bound ruling out similar classical improvements remained absent. In breakthrough work by Tang, it was demonstrated that this lack of progress in classical lower bounds was for good reasons. Concretely, she gave a classical counterpart of the quantum recommender systems algorithm, reducing the quantum advantage to a mere polynomial. Her approach is quite general and was named quantum-inspired classical algorithms. Since then, almost all the initially exponential quantum machine learning speedups have been reduced to polynomial via new quantum-inspired classical algorithms. From the current state-of-affairs, it is unclear whether we can hope for exponential quantum speedups for any natural machine learning task. In this work, we present the first such provable exponential separation between quantum and quantum-inspired classical algorithms. We prove the separation for the basic problem of solving a linear system when the input matrix is well-conditioned and has sparse rows and columns.

Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have multiple features.

Continuous-time batch state estimation using Gaussian processes is an efficient approach to estimate the trajectories of robots over time. In the past, relatively simple physics-motivated priors have been considered for such approaches, using assumptions such as constant velocity or acceleration. This paper presents an approach to incorporating exogenous control inputs, such as velocity or acceleration commands, into the continuous Gaussian process state-estimation framework. It is shown that this approach generalizes across different domains in robotics, making it applicable to both the estimation of continuous-time trajectories for mobile robots and the estimation of quasi-static continuum robot shapes. Results show that incorporating control inputs leads to more informed priors, potentially requiring less measurements and estimation nodes to obtain accurate estimates. This makes the approach particularly useful in situations in which limited sensing is available.

Privacy-preserving machine learning (PPML) solutions are gaining widespread popularity. Among these, many rely on homomorphic encryption (HE) that offers confidentiality of the model and the data, but at the cost of large latency and memory requirements. Pruning neural network (NN) parameters improves latency and memory in plaintext ML but has little impact if directly applied to HE-based PPML. We introduce a framework called HE-PEx that comprises new pruning methods, on top of a packing technique called tile tensors, for reducing the latency and memory of PPML inference. HE-PEx uses permutations to prune additional ciphertexts, and expansion to recover inference loss. We demonstrate the effectiveness of our methods for pruning fully-connected and convolutional layers in NNs on PPML tasks, namely, image compression, denoising, and classification, with autoencoders, multilayer perceptrons (MLPs) and convolutional neural networks (CNNs). We implement and deploy our networks atop a framework called HElayers, which shows a 10-35% improvement in inference speed and a 17-35% decrease in memory requirement over the unpruned network, corresponding to 33-65% fewer ciphertexts, within a 2.5% degradation in inference accuracy over the unpruned network. Compared to the state-of-the-art pruning technique for PPML, our techniques generate networks with 70% fewer ciphertexts, on average, for the same degradation limit.

Federated learning (FL), with the growing IoT and edge computing, is seen as a promising solution for applications that are latency- and privacy-aware. However, due to the widespread dispersion of data across many clients, it is challenging to monitor client anomalies caused by malfunctioning devices or unexpected events. The majority of FL solutions now in use concentrate on the classification problem, ignoring situations in which anomaly detection may also necessitate privacy preservation and effectiveness. The system in federated learning is unable to manage the potentially flawed behavior of its clients completely. These behaviors include sharing arbitrary parameter values and causing a delay in convergence since clients are chosen at random without knowing the malfunctioning behavior of the client. Client selection is crucial in terms of the efficiency of the federated learning framework. The challenges such as client drift and handling slow clients with low computational capability are well-studied in FL. However, the detection of anomalous clients either for security or for overall performance in the FL frameworks is hardly studied in the literature. In this paper, we propose an anomaly client detection algorithm to overcome malicious client attacks and client drift in FL frameworks. Instead of random client selection, our proposed method utilizes anomaly client detection to remove clients from the FL framework, thereby enhancing the security and efficiency of the overall system. This proposed method improves the global model convergence in almost 50\% fewer communication rounds compared with widely used random client selection using the MNIST dataset.

The widespread use of machine learning and data-driven algorithms for decision making has been steadily increasing over many years. The areas in which this is happening are diverse: healthcare, employment, finance, education, the legal system to name a few; and the associated negative side effects are being increasingly harmful for society. Negative data \emph{bias} is one of those, which tends to result in harmful consequences for specific groups of people. Any mitigation strategy or effective policy that addresses the negative consequences of bias must start with awareness that bias exists, together with a way to understand and quantify it. However, there is a lack of consensus on how to measure data bias and oftentimes the intended meaning is context dependent and not uniform within the research community. The main contributions of our work are: (1) The definition of Uniform Bias (UB), the first bias measure with a clear and simple interpretation in the full range of bias values. (2) A systematic study to characterize the flaws of existing measures in the context of anti employment discrimination rules used by the Office of Federal Contract Compliance Programs, additionally showing how UB solves open problems in this domain. (3) A framework that provides an efficient way to derive a mathematical formula for a bias measure based on an algorithmic specification of bias addition. Our results are experimentally validated using nine publicly available datasets and theoretically analyzed, which provide novel insights about the problem. Based on our approach, we also design a bias mitigation model that might be useful to policymakers.

The challenge of data scarcity hinders the application of deep learning in industrial surface defect classification (SDC), as it's difficult to collect and centralize sufficient training data from various entities in Industrial Internet of Things (IIoT) due to privacy concerns. Federated learning (FL) provides a solution by enabling collaborative global model training across clients while maintaining privacy. However, performance may suffer due to data heterogeneity-discrepancies in data distributions among clients. In this paper, we propose a novel personalized FL (PFL) approach, named Adversarial Federated Consensus Learning (AFedCL), for the challenge of data heterogeneity across different clients in SDC. First, we develop a dynamic consensus construction strategy to mitigate the performance degradation caused by data heterogeneity. Through adversarial training, local models from different clients utilize the global model as a bridge to achieve distribution alignment, alleviating the problem of global knowledge forgetting. Complementing this strategy, we propose a consensus-aware aggregation mechanism. It assigns aggregation weights to different clients based on their efficacy in global knowledge learning, thereby enhancing the global model's generalization capabilities. Finally, we design an adaptive feature fusion module to further enhance global knowledge utilization efficiency. Personalized fusion weights are gradually adjusted for each client to optimally balance global and local features. Compared with state-of-the-art FL methods like FedALA, the proposed AFedCL method achieves an accuracy increase of up to 5.67% on three SDC datasets.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司