亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider two versions of the Text Assembling problem. We are given a sequence of strings $s^1,\dots,s^n$ of total length $L$ that is a dictionary, and a string $t$ of length $m$ that is texts. The first version of the problem is assembling $t$ from the dictionary. The second version is the ``Shortest Superstring Problem''(SSP) or the ``Shortest Common Superstring Problem''(SCS). In this case, $t$ is not given, and we should construct the shortest string (we call it superstring) that contains each string from the given sequence as a substring. These problems are connected with the sequence assembly method for reconstructing a long DNA sequence from small fragments. For both problems, we suggest new quantum algorithms that work better than their classical counterparts. In the first case, we present a quantum algorithm with $O(m+\log m\sqrt{nL})$ running time. In the case of SSP, we present a quantum algorithm with running time $O(n^3 1.728^n +L +\sqrt{L}n^{1.5}+\sqrt{L}n\log^2L\log^2n)$.

相關內容

In multiclass classification over $n$ outcomes, the outcomes must be embedded into the reals with dimension at least $n-1$ in order to design a consistent surrogate loss that leads to the "correct" classification, regardless of the data distribution. For large $n$, such as in information retrieval and structured prediction tasks, optimizing a surrogate in $n-1$ dimensions is often intractable. We investigate ways to trade off surrogate loss dimension, the number of problem instances, and restricting the region of consistency in the simplex for multiclass classification. Following past work, we examine an intuitive embedding procedure that maps outcomes into the vertices of convex polytopes in a low-dimensional surrogate space. We show that full-dimensional subsets of the simplex exist around each point mass distribution for which consistency holds, but also, with less than $n-1$ dimensions, there exist distributions for which a phenomenon called hallucination occurs, which is when the optimal report under the surrogate loss is an outcome with zero probability. Looking towards application, we derive a result to check if consistency holds under a given polytope embedding and low-noise assumption, providing insight into when to use a particular embedding. We provide examples of embedding $n = 2^{d}$ outcomes into the $d$-dimensional unit cube and $n = d!$ outcomes into the $d$-dimensional permutahedron under low-noise assumptions. Finally, we demonstrate that with multiple problem instances, we can learn the mode with $\frac{n}{2}$ dimensions over the whole simplex.

Named Entity Recognition (NER) is a sequence classification Natural Language Processing task where entities are identified in the text and classified into predefined categories. It acts as a foundation for most information extraction systems. Dungeons and Dragons (D&D) is an open-ended tabletop fantasy game with its own diverse lore. DnD entities are domain-specific and are thus unrecognizable by even the state-of-the-art off-the-shelf NER systems as the NER systems are trained on general data for pre-defined categories such as: person (PERS), location (LOC), organization (ORG), and miscellaneous (MISC). For meaningful extraction of information from fantasy text, the entities need to be classified into domain-specific entity categories as well as the models be fine-tuned on a domain-relevant corpus. This work uses available lore of monsters in the D&D domain to fine-tune Trankit, which is a prolific NER framework that uses a pre-trained model for NER. Upon this training, the system acquires the ability to extract monster names from relevant domain documents under a novel NER tag. This work compares the accuracy of the monster name identification against; the zero-shot Trankit model and two FLAIR models. The fine-tuned Trankit model achieves an 87.86% F1 score surpassing all the other considered models.

We consider composition orderings for linear functions of one variable. Given $n$ linear functions $f_1,\dots,f_n$ and a constant $c$, the objective is to find a permutation $\sigma$ that minimizes/maximizes $f_{\sigma(n)}\circ\dots\circ f_{\sigma(1)}(c)$. It was first studied in the area of time-dependent scheduling, and known to be solvable in $O(n\log n)$ time if all functions are nondecreasing. In this paper, we present a complete characterization of optimal composition orderings for this case, by regarding linear functions as two-dimensional vectors. We also show several interesting properties on optimal composition orderings such as the equivalence between local and global optimality. Furthermore, by using the characterization above, we provide a fixed-parameter tractable (FPT) algorithm for the composition ordering problem for general linear functions, with respect to the number of decreasing linear functions. We next deal with matrix multiplication orderings as a generalization of composition of linear functions. Given $n$ matrices $M_1,\dots,M_n\in\mathbb{R}^{m\times m}$ and two vectors $w,y\in\mathbb{R}^m$, where $m$ denotes a positive integer, the objective is to find a permutation $\sigma$ that minimizes/maximizes $w^\top M_{\sigma(n)}\dots M_{\sigma(1)} y$. The problem is also viewed as a generalization of flow shop scheduling through a limit. By this extension, we show that the multiplication ordering problem for $2\times 2$ matrices is solvable in $O(n\log n)$ time if all the matrices are simultaneously triangularizable and have nonnegative determinants, and FPT with respect to the number of matrices with negative determinants, if all the matrices are simultaneously triangularizable. As the negative side, we finally prove that three possible natural generalizations are NP-hard: 1) when $m=2$, 2) when $m\geq 3$, and 3) the target version of the problem.

We study a variant of Collaborative PAC Learning, in which we aim to learn an accurate classifier for each of the $n$ data distributions, while minimizing the number of samples drawn from them in total. Unlike in the usual collaborative learning setup, it is not assumed that there exists a single classifier that is simultaneously accurate for all distributions. We show that, when the data distributions satisfy a weaker realizability assumption, sample-efficient learning is still feasible. We give a learning algorithm based on Empirical Risk Minimization (ERM) on a natural augmentation of the hypothesis class, and the analysis relies on an upper bound on the VC dimension of this augmented class. In terms of the computational efficiency, we show that ERM on the augmented hypothesis class is NP-hard, which gives evidence against the existence of computationally efficient learners in general. On the positive side, for two special cases, we give learners that are both sample- and computationally-efficient.

Given two strings $S$ and $P$, the Episode Matching problem is to find the shortest substring of $S$ that contains $P$ as a subsequence. The best known upper bound for this problem is $\tilde O(nm)$ by Das et al. (1997) , where $n,m$ are the lengths of $S$ and $P$, respectively. Although the problem is well studied and has many applications in data mining, this bound has never been improved. In this paper we show why this is the case by proving that no $O((nm)^{1-\epsilon})$ algorithm (even for binary strings) exists, unless the Strong Exponential Time Hypothesis (SETH) is false. We then consider the indexing version of the problem, where $S$ is preprocessed into a data structure for answering episode matching queries $P$. We show that for any $\tau$, there is a data structure using $O(n+\left(\frac{n}{\tau}\right)^k)$ space that answers episode matching queries for any $P$ of length $k$ in $O(k\cdot \tau \cdot \log \log n )$ time. We complement this upper bound with an almost matching lower bound, showing that any data structure that answers episode matching queries for patterns of length $k$ in time $O(n^\delta)$, must use $\Omega(n^{k-k\delta-o(1)})$ space, unless the Strong $k$-Set Disjointness Conjecture is false. Finally, for the special case of $k=2$, we present a faster construction of the data structure using fast min-plus multiplication of bounded integer matrices.

In this paper, we propose a new deinterleaving method for mixtures of discrete renewal Markov chains. This method relies on the maximization of a penalized likelihood score. It exploits all available information about both the sequence of the different symbols and their arrival times. A theoretical analysis is carried out to prove that minimizing this score allows to recover the true partition of symbols in the large sample limit, under mild conditions on the component processes. This theoretical analysis is then validated by experiments on synthetic data. Finally, the method is applied to deinterleave pulse trains received from different emitters in a RESM (Radar Electronic Support Measurements) context and we show that the proposed method competes favorably with state-of-the-art methods on simulated warfare datasets.

Given a string $S$ of length $n$, the classic string indexing problem is to preprocess $S$ into a compact data structure that supports efficient subsequent pattern queries. In this paper we consider the basic variant where the pattern is given in compressed form and the goal is to achieve query time that is fast in terms of the compressed size of the pattern. This captures the common client-server scenario, where a client submits a query and communicates it in compressed form to a server. Instead of the server decompressing the query before processing it, we consider how to efficiently process the compressed query directly. Our main result is a novel linear space data structure that achieves near-optimal query time for patterns compressed with the classic Lempel-Ziv compression scheme. Along the way we develop several data structural techniques of independent interest, including a novel data structure that compactly encodes all LZ77 compressed suffixes of a string in linear space and a general decomposition of tries that reduces the search time from logarithmic in the size of the trie to logarithmic in the length of the pattern.

This paper presents a new generalization error analysis for Decentralized Stochastic Gradient Descent (D-SGD) based on algorithmic stability. The obtained results overhaul a series of recent works that suggested an increased instability due to decentralization and a detrimental impact of poorly-connected communication graphs on generalization. On the contrary, we show, for convex, strongly convex and non-convex functions, that D-SGD can always recover generalization bounds analogous to those of classical SGD, suggesting that the choice of graph does not matter. We then argue that this result is coming from a worst-case analysis, and we provide a refined data-dependent generalization bound for general convex functions. This new bound reveals that the choice of graph can in fact improve the worst-case bound in certain regimes, and that surprisingly, a poorly-connected graph can even be beneficial.

When translating a term calculus into a graphical formalism many inessential details are abstracted away. In the case of $\lambda$-calculus translated to proof-nets, these inessential details are captured by a notion of equivalence on $\lambda$-terms known as $\simeq_\sigma$-equivalence, in both the intuitionistic (due to Regnier) and classical (due to Laurent) cases. The purpose of this paper is to uncover a strong bisimulation behind $\simeq_\sigma$-equivalence, as formulated by Laurent for Parigot's $\lambda\mu$-calculus. This is achieved by introducing a relation $\simeq$, defined over a revised presentation of $\lambda\mu$-calculus we dub $\Lambda M$. More precisely, we first identify the reasons behind Laurent's $\simeq_\sigma$-equivalence on $\lambda\mu$-terms failing to be a strong bisimulation. Inspired by Laurent's \emph{Polarized Proof-Nets}, this leads us to distinguish multiplicative and exponential reduction steps on terms. Second, we enrich the syntax of $\lambda\mu$ to allow us to track the exponential operations. These technical ingredients pave the way towards a strong bisimulation for the classical case. We introduce a calculus $\Lambda M$ and a relation $\simeq$ that we show to be a strong bisimulation with respect to reduction in $\Lambda M$, ie. two $\simeq$-equivalent terms have the exact same reduction semantics, a result which fails for Regnier's $\simeq_\sigma$-equivalence in $\lambda$-calculus as well as for Laurent's $\simeq_\sigma$-equivalence in $\lambda\mu$. Although $\simeq$ is formulated over an enriched syntax and hence is not strictly included in Laurent's $\simeq_\sigma$, we show how it can be seen as a restriction of it.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司