We introduce a novel approach to inference on parameters that take values in a Riemannian manifold embedded in a Euclidean space. Parameter spaces of this form are ubiquitous across many fields, including chemistry, physics, computer graphics, and geology. This new approach uses generalized fiducial inference to obtain a posterior-like distribution on the manifold, without needing to know a parameterization that maps the constrained space to an unconstrained Euclidean space. The proposed methodology, called the constrained generalized fiducial distribution (CGFD), is obtained by using mathematical tools from Riemannian geometry. A Bernstein-von Mises-type result for the CGFD, which provides intuition for how the desirable asymptotic qualities of the unconstrained generalized fiducial distribution are inherited by the CGFD, is provided. To demonstrate the practical use of the CGFD, we provide three proof-of-concept examples: inference for data from a multivariate normal density with the mean parameters on a sphere, a linear logspline density estimation problem, and a reimagined approach to the AR(1) model, all of which exhibit desirable coverages via simulation. We discuss two Markov chain Monte Carlo algorithms for the exploration of these constrained parameter spaces and adapt them for the CGFD.
In this paper, we investigate the impact of neural networks (NNs) topology on adversarial robustness. Specifically, we study the graph produced when an input traverses all the layers of a NN, and show that such graphs are different for clean and adversarial inputs. We find that graphs from clean inputs are more centralized around highway edges, whereas those from adversaries are more diffuse, leveraging under-optimized edges. Through experiments on a variety of datasets and architectures, we show that these under-optimized edges are a source of adversarial vulnerability and that they can be used to detect adversarial inputs.
Deep learning technology has made great progress in multi-view 3D reconstruction tasks. At present, most mainstream solutions establish the mapping between views and shape of an object by assembling the networks of 2D encoder and 3D decoder as the basic structure while they adopt different approaches to obtain aggregation of features from several views. Among them, the methods using attention-based fusion perform better and more stable than the others, however, they still have an obvious shortcoming -- the strong independence of each view during predicting the weights for merging leads to a lack of adaption of the global state. In this paper, we propose a global-aware attention-based fusion approach that builds the correlation between each branch and the global to provide a comprehensive foundation for weights inference. In order to enhance the ability of the network, we introduce a novel loss function to supervise the shape overall and propose a dynamic two-stage training strategy that can effectively adapt to all reconstructors with attention-based fusion. Experiments on ShapeNet verify that our method outperforms existing SOTA methods while the amount of parameters is far less than the same type of algorithm, Pix2Vox++. Furthermore, we propose a view-reduction method based on maximizing diversity and discuss the cost-performance tradeoff of our model to achieve a better performance when facing heavy input amount and limited computational cost.
A simulation is useful when the phenomenon of interest is either expensive to regenerate or irreproducible with the same context. Recently, Bayesian inference on the distribution of the simulation input parameter has been implemented sequentially to minimize the required simulation budget for the task of simulation validation to the real-world. However, the Bayesian inference is still challenging when the ground-truth posterior is multi-modal with a high-dimensional simulation output. This paper introduces a regularization technique, namely Neural Posterior Regularization (NPR), which enforces the model to explore the input parameter space effectively. Afterward, we provide the closed-form solution of the regularized optimization that enables analyzing the effect of the regularization. We empirically validate that NPR attains the statistically significant gain on benchmark performances for diverse simulation tasks.
An adaptive implicit-explicit (IMEX) BDF2 scheme is investigated on generalized SAV approach for the Cahn-Hilliard equation by combining with Fourier spectral method in space. It is proved that the modified energy dissipation law is unconditionally preserved at discrete levels. Under a mild ratio restriction, i.e., \Ass{1}: $0<r_k:=\tau_k/\tau_{k-1}< r_{\max}\approx 4.8645$, we establish a rigorous error estimate in $H^1$-norm and achieve optimal second-order accuracy in time. The proof involves the tools of discrete orthogonal convolution (DOC) kernels and inequality zoom. It is worth noting that the presented adaptive time-step scheme only requires solving one linear system with constant coefficients at each time step. In our analysis, the first-consistent BDF1 for the first step does not bring the order reduction in $H^1$-norm. The $H^1$ bound of the numerical solution under periodic boundary conditions can be derived without any restriction (such as zero mean of the initial data). Finally, numerical examples are provided to verify our theoretical analysis and the algorithm efficiency.
We investigate the distributed complexity of maximal matching and maximal independent set (MIS) in hypergraphs in the LOCAL model. A maximal matching of a hypergraph $H=(V_H,E_H)$ is a maximal disjoint set $M\subseteq E_H$ of hyperedges and an MIS $S\subseteq V_H$ is a maximal set of nodes such that no hyperedge is fully contained in $S$. Both problems can be solved by a simple sequential greedy algorithm, which can be implemented naively in $O(\Delta r + \log^* n)$ rounds, where $\Delta$ is the maximum degree, $r$ is the rank, and $n$ is the number of nodes. We show that for maximal matching, this naive algorithm is optimal in the following sense. Any deterministic algorithm for solving the problem requires $\Omega(\min\{\Delta r, \log_{\Delta r} n\})$ rounds, and any randomized one requires $\Omega(\min\{\Delta r, \log_{\Delta r} \log n\})$ rounds. Hence, for any algorithm with a complexity of the form $O(f(\Delta, r) + g(n))$, we have $f(\Delta, r) \in \Omega(\Delta r)$ if $g(n)$ is not too large, and in particular if $g(n) = \log^* n$ (which is the optimal asymptotic dependency on $n$ due to Linial's lower bound [FOCS'87]). Our lower bound proof is based on the round elimination framework, and its structure is inspired by a new round elimination fixed point that we give for the $\Delta$-vertex coloring problem in hypergraphs. For the MIS problem on hypergraphs, we show that for $\Delta\ll r$, there are significant improvements over the naive $O(\Delta r + \log^* n)$-round algorithm. We give two deterministic algorithms for the problem. We show that a hypergraph MIS can be computed in $O(\Delta^2\cdot\log r + \Delta\cdot\log r\cdot \log^* r + \log^* n)$ rounds. We further show that at the cost of a worse dependency on $\Delta$, the dependency on $r$ can be removed almost entirely, by giving an algorithm with complexity $\Delta^{O(\Delta)}\cdot\log^* r + O(\log^* n)$.
Adding fiducial markers to a scene is a well-known strategy for making visual localization algorithms more robust. Traditionally, these marker locations are selected by humans who are familiar with visual localization techniques. This paper explores the problem of automatic marker placement within a scene. Specifically, given a predetermined set of markers and a scene model, we compute optimized marker positions within the scene that can improve accuracy in visual localization. Our main contribution is a novel framework for modeling camera localizability that incorporates both natural scene features and artificial fiducial markers added to the scene. We present optimized marker placement (OMP), a greedy algorithm that is based on the camera localizability framework. We have also designed a simulation framework for testing marker placement algorithms on 3D models and images generated from synthetic scenes. We have evaluated OMP within this testbed and demonstrate an improvement in the localization rate by up to 20 percent on three different scenes.
We present a new method for scaling automatic configuration of computer networks. The key idea is to relax the computationally hard search problem of finding a configuration that satisfies a given specification into an approximate objective amenable to learning-based techniques. Based on this idea, we train a neural algorithmic model which learns to generate configurations likely to (fully or partially) satisfy a given specification under existing routing protocols. By relaxing the rigid satisfaction guarantees, our approach (i) enables greater flexibility: it is protocol-agnostic, enables cross-protocol reasoning, and does not depend on hardcoded rules; and (ii) finds configurations for much larger computer networks than previously possible. Our learned synthesizer is up to 490x faster than state-of-the-art SMT-based methods, while producing configurations which on average satisfy more than 93% of the provided requirements.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.