亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many economic panel and dynamic models, such as rational behavior and Euler equations, imply that the parameters of interest are identified by conditional moment restrictions. We introduce a novel inference method without any prior information about which conditioning instruments are weak or irrelevant. Building on Bierens (1990), we propose penalized maximum statistics and combine bootstrap inference with model selection. Our method optimizes asymptotic power by solving a data-dependent max-min problem for tuning parameter selection. Extensive Monte Carlo experiments, based on an empirical example, demonstrate the extent to which our inference procedure is superior to those available in the literature.

相關內容

In reinsurance, Poisson and Negative binomial distributions are employed for modeling frequency. However, the incomplete data regarding reported incurred claims above a priority level presents challenges in estimation. This paper focuses on frequency estimation using Schnieper's framework for claim numbering. We demonstrate that Schnieper's model is consistent with a Poisson distribution for the total number of claims above a priority at each year of development, providing a robust basis for parameter estimation. Additionally, we explain how to build an alternative assumption based on a Negative binomial distribution, which yields similar results. The study includes a bootstrap procedure to manage uncertainty in parameter estimation and a case study comparing assumptions and evaluating the impact of the bootstrap approach.

We consider a fully discretized numerical scheme for parabolic stochastic partial differential equations with multiplicative noise. Our abstract framework can be applied to formulate a non-iterative domain decomposition approach. Such methods can help to parallelize the code and therefore lead to a more efficient implementation. The domain decomposition is integrated through the Douglas-Rachford splitting scheme, where one split operator acts on one part of the domain. For an efficient space discretization of the underlying equation, we chose the discontinuous Galerkin method as this suits the parallelization strategy well. For this fully discretized scheme, we provide a strong space-time convergence result. We conclude the manuscript with numerical experiments validating our theoretical findings.

Finite element discretization of Stokes problems can result in singular, inconsistent saddle point linear algebraic systems. This inconsistency can cause many iterative methods to fail to converge. In this work, we consider the lowest-order weak Galerkin finite element method to discretize Stokes flow problems and study a consistency enforcement by modifying the right-hand side of the resulting linear system. It is shown that the modification of the scheme does not affect the optimal-order convergence of the numerical solution. Moreover, inexact block diagonal and triangular Schur complement preconditioners and the minimal residual method (MINRES) and the generalized minimal residual method (GMRES) are studied for the iterative solution of the modified scheme. Bounds for the eigenvalues and the residual of MINRES/GMRES are established. Those bounds show that the convergence of MINRES and GMRES is independent of the viscosity parameter and mesh size. The convergence of the modified scheme and effectiveness of the preconditioners are verified using numerical examples in two and three dimensions.

A Nehari manifold optimization method (NMOM) is introduced for finding 1-saddles, i.e., saddle points with the Morse index equal to one, of a generic nonlinear functional in Hilbert spaces. Actually, it is based on the variational characterization that 1-saddles of this functional are local minimizers of the same functional restricted on the associated Nehari manifold. The framework contains two important ingredients: one is the retraction mapping to make the iterative points always lie on the Nehari manifold; the other is the tangential search direction to decrease the functional with suitable step-size search rules. Particularly, the global convergence is rigorously established by virtue of some crucial analysis techniques (including a weak convergence method) that overcome difficulties in the infinite-dimensional setting. In practice, combining with an easy-to-implement Nehari retraction and the negative Riemannian gradient direction, the NMOM is successfully applied to compute the unstable ground-state solutions of a class of typical semilinear elliptic PDEs, such as the H\'enon equation and the stationary nonlinear Schr\"odinger equation. In particular, the symmetry-breaking phenomenon of the ground states of the H\'enon equation is explored numerically in 1D and 2D with interesting numerical findings on the critical value of the symmetry-breaking reported.

The maximal regularity property of discontinuous Galerkin methods for linear parabolic equations is used together with variational techniques to establish a priori and a posteriori error estimates of optimal order under optimal regularity assumptions. The analysis is set in the maximal regularity framework of UMD Banach spaces. Similar results were proved in an earlier work, based on the consistency analysis of Radau IIA methods. The present error analysis, which is based on variational techniques, is of independent interest, but the main motivation is that it extends to nonlinear parabolic equations; in contrast to the earlier work. Both autonomous and nonautonomous linear equations are considered.

We consider the problem of causal inference based on observational data (or the related missing data problem) with a binary or discrete treatment variable. In that context, we study inference for the counterfactual density functions and contrasts thereof, which can provide more nuanced information than counterfactual means and the average treatment effect. We impose the shape-constraint of log-concavity, a type of unimodality constraint, on the counterfactual densities, and then develop doubly robust estimators of the log-concave counterfactual density based on augmented inverse-probability weighted pseudo-outcomes. We provide conditions under which the estimator is consistent in various global metrics. We also develop asymptotically valid pointwise confidence intervals for the counterfactual density functions and differences and ratios thereof, which serve as a building block for more comprehensive analyses of distributional differences. We also present a method for using our estimator to implement density confidence bands.

Unlabeled sensing is a linear inverse problem with permuted measurements. We propose an alternating minimization (AltMin) algorithm with a suitable initialization for two widely considered permutation models: partially shuffled/$k$-sparse permutations and $r$-local/block diagonal permutations. Key to the performance of the AltMin algorithm is the initialization. For the exact unlabeled sensing problem, assuming either a Gaussian measurement matrix or a sub-Gaussian signal, we bound the initialization error in terms of the number of blocks $s$ and the number of shuffles $k$. Experimental results show that our algorithm is fast, applicable to both permutation models, and robust to choice of measurement matrix. We also test our algorithm on several real datasets for the linked linear regression problem and show superior performance compared to baseline methods.

Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.

An extremely schematic model of the forces acting an a sailing yacht equipped with a system of foils is here presented and discussed. The role of the foils is to raise the hull from the water in order to reduce the total resistance and then increase the speed. Some CFD simulations are providing the total resistance of the bare hull at some values of speed and displacement, as well as the characteristics (drag and lift coefficients) of the 2D foil sections used for the appendages. A parametric study has been performed for the characterization of a foil of finite dimensions. The equilibrium of the vertical forces and longitudinal moments, as well as a reduced displacement, is obtained by controlling the pitch angle of the foils. The value of the total resistance of the yacht with foils is then compared with the case without foils, evidencing the speed regime where an advantage is obtained, if any.

We consider the discretization of a class of nonlinear parabolic equations by discontinuous Galerkin time-stepping methods and establish a priori as well as conditional a posteriori error estimates. Our approach is motivated by the error analysis in [9] for Runge-Kutta methods for nonlinear parabolic equations; in analogy to [9], the proofs are based on maximal regularity properties of discontinuous Galerkin methods for non-autonomous linear parabolic equations.

北京阿比特科技有限公司