亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The use of photon counting detection technology has resulted in significant X-ray imaging research interest in recent years. Computed Tomography (CT) scanners can benefit from photon-counting detectors, which are new technology with the potential to overcome key limitations of conventional CT detectors. Researchers are still studying the effectiveness and sensitivity of semiconductor detector materials in photon counting detectors for detecting soft tissue contrasts. This study aimed to characterize the performance of the Cadmium Zinc Telluride photon counting detector in identifying various tissues. An optimal frame rate per second (FPS) of CZT detector was evaluated by setting the X-ray tube voltage and current at 25 keV, 35 keV and 0.5 mA, 1.0 mA respectively by keeping the optimum FPS fixed, the detector energy thresholds were set in small steps from 15 keV to 35 keV and the Currents were set for X-ray tubes in ranges of 0.1 mA to 1.0 mA to find the relationship between voltage and current of the X-ray source and counts per second (CPS). The samples i.e., fat, liver, muscles, paraffin wax, and contrast media were stacked at six different thickness levels in a stair-step chamber made from Plexi-glass. X-ray transmission at six different thicknesses of tissue samples was also examined for five different energy (regions) thresholds (21 keV, 25 keV, 29 keV, 31 keV, and 45 keV) to determine the effect on count per second (CPS). In this study, 12 frames per second is found to be the optimum frame rate per second (FPS) based on the spectral response of an X-ray source and CPS has a linear relationship with X-ray tube current as well. It was also noted that A sample's thickness also affects its X-ray transmission at different energy thresholds. A high sensitivity and linearity of the detectors make them suitable for use in both preclinical and medical applications.

相關內容

Covariate adjustment is a ubiquitous method used to estimate the average treatment effect (ATE) from observational data. Assuming a known graphical structure of the data generating model, recent results give graphical criteria for optimal adjustment, which enables efficient estimation of the ATE. However, graphical approaches are challenging for high-dimensional and complex data, and it is not straightforward to specify a meaningful graphical model of non-Euclidean data such as texts. We propose an general framework that accommodates adjustment for any subset of information expressed by the covariates. We generalize prior works and leverage these results to identify the optimal covariate information for efficient adjustment. This information is minimally sufficient for prediction of the outcome conditionally on treatment. Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estimator (DOPE) for efficient estimation of the ATE, and we provide asymptotic results for the DOPE under general conditions. Compared to the augmented inverse propensity weighted (AIPW) estimator, the DOPE can retain its efficiency even when the covariates are highly predictive of treatment. We illustrate this with a single-index model, and with an implementation of the DOPE based on neural networks, we demonstrate its performance on simulated and real data. Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.

Rendering photo-realistic novel-view images of complex scenes has been a long-standing challenge in computer graphics. In recent years, great research progress has been made on enhancing rendering quality and accelerating rendering speed in the realm of view synthesis. However, when rendering complex dynamic scenes with sparse views, the rendering quality remains limited due to occlusion problems. Besides, for rendering high-resolution images on dynamic scenes, the rendering speed is still far from real-time. In this work, we propose a generalizable view synthesis method that can render high-resolution novel-view images of complex static and dynamic scenes in real-time from sparse views. To address the occlusion problems arising from the sparsity of input views and the complexity of captured scenes, we introduce an explicit 3D visibility reasoning approach that can efficiently estimate the visibility of sampled 3D points to the input views. The proposed visibility reasoning approach is fully differentiable and can gracefully fit inside the volume rendering pipeline, allowing us to train our networks with only multi-view images as supervision while refining geometry and texture simultaneously. Besides, each module in our pipeline is carefully designed to bypass the time-consuming MLP querying process and enhance the rendering quality of high-resolution images, enabling us to render high-resolution novel-view images in real-time.Experimental results show that our method outperforms previous view synthesis methods in both rendering quality and speed, particularly when dealing with complex dynamic scenes with sparse views.

With dense inputs, Neural Radiance Fields (NeRF) is able to render photo-realistic novel views under static conditions. Although the synthesis quality is excellent, existing NeRF-based methods fail to obtain moderate three-dimensional (3D) structures. The novel view synthesis quality drops dramatically given sparse input due to the implicitly reconstructed inaccurate 3D-scene structure. We propose SfMNeRF, a method to better synthesize novel views as well as reconstruct the 3D-scene geometry. SfMNeRF leverages the knowledge from the self-supervised depth estimation methods to constrain the 3D-scene geometry during view synthesis training. Specifically, SfMNeRF employs the epipolar, photometric consistency, depth smoothness, and position-of-matches constraints to explicitly reconstruct the 3D-scene structure. Through these explicit constraints and the implicit constraint from NeRF, our method improves the view synthesis as well as the 3D-scene geometry performance of NeRF at the same time. In addition, SfMNeRF synthesizes novel sub-pixels in which the ground truth is obtained by image interpolation. This strategy enables SfMNeRF to include more samples to improve generalization performance. Experiments on two public datasets demonstrate that SfMNeRF surpasses state-of-the-art approaches. Code is available at //github.com/XTU-PR-LAB/SfMNeRF

While effective in recommendation tasks, collaborative filtering (CF) techniques face the challenge of data sparsity. Researchers have begun leveraging contrastive learning to introduce additional self-supervised signals to address this. However, this approach often unintentionally distances the target user/item from their collaborative neighbors, limiting its efficacy. In response, we propose a solution that treats the collaborative neighbors of the anchor node as positive samples within the final objective loss function. This paper focuses on developing two unique supervised contrastive loss functions that effectively combine supervision signals with contrastive loss. We analyze our proposed loss functions through the gradient lens, demonstrating that different positive samples simultaneously influence updating the anchor node's embeddings. These samples' impact depends on their similarities to the anchor node and the negative samples. Using the graph-based collaborative filtering model as our backbone and following the same data augmentation methods as the existing contrastive learning model SGL, we effectively enhance the performance of the recommendation model. Our proposed Neighborhood-Enhanced Supervised Contrastive Loss (NESCL) model substitutes the contrastive loss function in SGL with our novel loss function, showing marked performance improvement. On three real-world datasets, Yelp2018, Gowalla, and Amazon-Book, our model surpasses the original SGL by 10.09%, 7.09%, and 35.36% on NDCG@20, respectively.

Zero-shot link prediction (ZSLP) on knowledge graphs aims at automatically identifying relations between given entities. Existing methods primarily employ auxiliary information to predict tail entity given head entity and its relation, yet face challenges due to the occasional unavailability of such detailed information and the inherent simplicity of predicting tail entities based on semantic similarities. Even though Large Language Models (LLMs) offer a promising solution to predict unobserved relations between the head and tail entity in a zero-shot manner, their performance is still restricted due to the inability to leverage all the (exponentially many) paths' information between two entities, which are critical in collectively indicating their relation types. To address this, in this work, we introduce a Condensed Transition Graph Framework for Zero-Shot Link Prediction (CTLP), which encodes all the paths' information in linear time complexity to predict unseen relations between entities, attaining both efficiency and information preservation. Specifically, we design a condensed transition graph encoder with theoretical guarantees on its coverage, expressiveness, and efficiency. It is learned by a transition graph contrastive learning strategy. Subsequently, we design a soft instruction tuning to learn and map the all-path embedding to the input of LLMs. Experimental results show that our proposed CTLP method achieves state-of-the-art performance on three standard ZSLP datasets

LoRaWAN is a wireless technology that enables high-density deployments of IoT devices. Designed for Low Power Wide Area Networks (LPWAN), LoRaWAN employs large cells to service a potentially extremely high number of devices. The technology enforces a centralized architecture, directing all data generated by the devices to a single network server for data processing. End-to-end encryption is used to guarantee the confidentiality and security of data. In this demo, we present \edgelora, a system architecture designed to incorporate edge processing in LoRaWAN without compromising security and confidentiality of data. \edgelora maintains backward compatibility and addresses scalability issues arising from handling large amounts of data sourced from a diverse range of devices. The demo provides evidence on the advantages in terms of reduced latency, lower network bandwidth requirements, higher scalability, and improved security and privacy resulting from the application of the Edge processing paradigm to LoRaWAN.

This paper presents a statistical forward model for a Compton imaging system, called Compton imager. This system, under development at the University of Illinois Urbana Champaign, is a variant of Compton cameras with a single type of sensors which can simultaneously act as scatterers and absorbers. This imager is convenient for imaging situations requiring a wide field of view. The proposed statistical forward model is then used to solve the inverse problem of estimating the location and energy of point-like sources from observed data. This inverse problem is formulated and solved in a Bayesian framework by using a Metropolis within Gibbs algorithm for the estimation of the location, and an expectation-maximization algorithm for the estimation of the energy. This approach leads to more accurate estimation when compared with the deterministic standard back-projection approach, with the additional benefit of uncertainty quantification in the low photon imaging setting.

The rapid advancement of high-quality image generation models based on AI has generated a deluge of anime illustrations. Recommending illustrations to users within massive data has become a challenging and popular task. However, existing anime recommendation systems have focused on text features but still need to integrate image features. In addition, most multi-modal recommendation research is constrained by tightly coupled datasets, limiting its applicability to anime illustrations. We propose the User-aware Multi-modal Animation Illustration Recommendation Fusion with Painting Style (UMAIR-FPS) to tackle these gaps. In the feature extract phase, for image features, we are the first to combine image painting style features with semantic features to construct a dual-output image encoder for enhancing representation. For text features, we obtain text embeddings based on fine-tuning Sentence-Transformers by incorporating domain knowledge that composes a variety of domain text pairs from multilingual mappings, entity relationships, and term explanation perspectives, respectively. In the multi-modal fusion phase, we novelly propose a user-aware multi-modal contribution measurement mechanism to weight multi-modal features dynamically according to user features at the interaction level and employ the DCN-V2 module to model bounded-degree multi-modal crosses effectively. UMAIR-FPS surpasses the stat-of-the-art baselines on large real-world datasets, demonstrating substantial performance enhancements.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Degradation of image quality due to the presence of haze is a very common phenomenon. Existing DehazeNet [3], MSCNN [11] tackled the drawbacks of hand crafted haze relevant features. However, these methods have the problem of color distortion in gloomy (poor illumination) environment. In this paper, a cardinal (red, green and blue) color fusion network for single image haze removal is proposed. In first stage, network fusses color information present in hazy images and generates multi-channel depth maps. The second stage estimates the scene transmission map from generated dark channels using multi channel multi scale convolutional neural network (McMs-CNN) to recover the original scene. To train the proposed network, we have used two standard datasets namely: ImageNet [5] and D-HAZY [1]. Performance evaluation of the proposed approach has been carried out using structural similarity index (SSIM), mean square error (MSE) and peak signal to noise ratio (PSNR). Performance analysis shows that the proposed approach outperforms the existing state-of-the-art methods for single image dehazing.

北京阿比特科技有限公司