亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traffic anomaly detection (TAD) in driving videos is critical for ensuring the safety of autonomous driving and advanced driver assistance systems. Previous single-stage TAD methods primarily rely on frame prediction, making them vulnerable to interference from dynamic backgrounds induced by the rapid movement of the dashboard camera. While two-stage TAD methods appear to be a natural solution to mitigate such interference by pre-extracting background-independent features (such as bounding boxes and optical flow) using perceptual algorithms, they are susceptible to the performance of first-stage perceptual algorithms and may result in error propagation. In this paper, we introduce TTHF, a novel single-stage method aligning video clips with text prompts, offering a new perspective on traffic anomaly detection. Unlike previous approaches, the supervised signal of our method is derived from languages rather than orthogonal one-hot vectors, providing a more comprehensive representation. Further, concerning visual representation, we propose to model the high frequency of driving videos in the temporal domain. This modeling captures the dynamic changes of driving scenes, enhances the perception of driving behavior, and significantly improves the detection of traffic anomalies. In addition, to better perceive various types of traffic anomalies, we carefully design an attentive anomaly focusing mechanism that visually and linguistically guides the model to adaptively focus on the visual context of interest, thereby facilitating the detection of traffic anomalies. It is shown that our proposed TTHF achieves promising performance, outperforming state-of-the-art competitors by +5.4% AUC on the DoTA dataset and achieving high generalization on the DADA dataset.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 設計 · Integration · Processing(編程語言) · 變換 ·
2024 年 2 月 22 日

The rapid development of musical AI technologies has expanded the creative potential of various musical activities, ranging from music style transformation to music generation. However, little research has investigated how musical AIs can support music therapists, who urgently need new technology support. This study used a mixed method, including semi-structured interviews and a participatory design approach. By collaborating with music therapists, we explored design opportunities for musical AIs in music therapy. We presented the co-design outcomes involving the integration of musical AIs into a music therapy process, which was developed from a theoretical framework rooted in emotion-focused therapy. After that, we concluded the benefits and concerns surrounding music AIs from the perspective of music therapists. Based on our findings, we discussed the opportunities and design implications for applying musical AIs to music therapy. Our work offers valuable insights for developing human-AI collaborative music systems in therapy involving complex procedures and specific requirements.

Recent advancements in autonomous driving have relied on data-driven approaches, which are widely adopted but face challenges including dataset bias, overfitting, and uninterpretability. Drawing inspiration from the knowledge-driven nature of human driving, we explore the question of how to instill similar capabilities into autonomous driving systems and summarize a paradigm that integrates an interactive environment, a driver agent, as well as a memory component to address this question. Leveraging large language models (LLMs) with emergent abilities, we propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge and evolve continuously. Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability over reinforcement learning-based methods. Moreover, DiLu is able to directly acquire experiences from real-world datasets which highlights its potential to be deployed on practical autonomous driving systems. To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles. Through the proposed DiLu framework, LLM is strengthened to apply knowledge and to reason causally in the autonomous driving domain. Project page: //pjlab-adg.github.io/DiLu/

As intelligent robots like autonomous vehicles become increasingly deployed in the presence of people, the extent to which these systems should leverage model-based game-theoretic planners versus data-driven policies for safe, interaction-aware motion planning remains an open question. Existing dynamic game formulations assume all agents are task-driven and behave optimally. However, in reality, humans tend to deviate from the decisions prescribed by these models, and their behavior is better approximated under a noisy-rational paradigm. In this work, we investigate a principled methodology to blend a data-driven reference policy with an optimization-based game-theoretic policy. We formulate KLGame, a type of non-cooperative dynamic game with Kullback-Leibler (KL) regularization with respect to a general, stochastic, and possibly multi-modal reference policy. Our method incorporates, for each decision maker, a tunable parameter that permits modulation between task-driven and data-driven behaviors. We propose an efficient algorithm for computing multimodal approximate feedback Nash equilibrium strategies of KLGame in real time. Through a series of simulated and real-world autonomous driving scenarios, we demonstrate that KLGame policies can more effectively incorporate guidance from the reference policy and account for noisily-rational human behaviors versus non-regularized baselines.

Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning. Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance. However, the approach is less suited for scaling to new domains or new annotation languages, where fine-tuning data is unavailable. To address this problem, we handle the task of conversation retrieval based on text summaries of the conversations. A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search. To avoid the extra inference cost brought by LLM-based conversation summarization, we further distill a light-weight conversation encoder which produces query embeddings without decoding summaries for test conversations. We validate our retrieval approach on MultiWOZ datasets with GPT-Neo-2.7B and LLaMA-7B/30B. The experimental results show a significant improvement over relevant baselines in real few-shot DST settings.

The vulnerability of automated fingerprint recognition systems (AFRSs) to presentation attacks (PAs) promotes the vigorous development of PA detection (PAD) technology. However, PAD methods have been limited by information loss and poor generalization ability, resulting in new PA materials and fingerprint sensors. This paper thus proposes a global-local model-based PAD (RTK-PAD) method to overcome those limitations to some extent. The proposed method consists of three modules, called: 1) the global module; 2) the local module; and 3) the rethinking module. By adopting the cut-out-based global module, a global spoofness score predicted from nonlocal features of the entire fingerprint images can be achieved. While by using the texture in-painting-based local module, a local spoofness score predicted from fingerprint patches is obtained. The two modules are not independent but connected through our proposed rethinking module by localizing two discriminative patches for the local module based on the global spoofness score. Finally, the fusion spoofness score by averaging the global and local spoofness scores is used for PAD. Our experimental results evaluated on LivDet 2017 show that the proposed RTK-PAD can achieve an average classification error (ACE) of 2.28% and a true detection rate (TDR) of 91.19% when the false detection rate (FDR) equals 1.0%, which significantly outperformed the state-of-the-art methods by $\sim$10% in terms of TDR (91.19% versus 80.74%).

Weakly supervised object detection (WSup-OD) increases the usefulness and interpretability of image classification algorithms without requiring additional supervision. The successes of multiple instance learning in this task for natural images, however, do not translate well to medical images due to the very different characteristics of their objects (i.e. pathologies). In this work, we propose Weakly Supervised ROI Proposal Networks (WSRPN), a new method for generating bounding box proposals on the fly using a specialized region of interest-attention (ROI-attention) module. WSRPN integrates well with classic backbone-head classification algorithms and is end-to-end trainable with only image-label supervision. We experimentally demonstrate that our new method outperforms existing methods in the challenging task of disease localization in chest X-ray images. Code: //github.com/philip-mueller/wsrpn

Path planning for multiple non-holonomic robots in continuous domains constitutes a difficult robotics challenge with many applications. Despite significant recent progress on the topic, computationally efficient and high-quality solutions are lacking, especially in lifelong settings where robots must continuously take on new tasks. In this work, we make it possible to extend key ideas enabling state-of-the-art (SOTA) methods for multi-robot planning in discrete domains to the motion planning of multiple Ackerman (car-like) robots in lifelong settings, yielding high-performance centralized and decentralized planners. Our planners compute trajectories that allow the robots to reach precise $SE(2)$ goal poses. The effectiveness of our methods is thoroughly evaluated and confirmed using both simulation and real-world experiments.

This paper proposes an adaptive behavioral decision-making method for autonomous vehicles (AVs) focusing on complex merging scenarios. Leveraging principles from non-cooperative game theory, we develop a vehicle interaction behavior model that defines key traffic elements and integrates a multifactorial reward function. Maximum entropy inverse reinforcement learning (IRL) is employed for behavior model parameter optimization. Optimal matching parameters can be obtained using the interaction behavior feature vector and the behavior probabilities output by the vehicle interaction model. Further, a behavioral decision-making method adapted to dynamic environments is proposed. By establishing a mapping model between multiple environmental variables and model parameters, it enables parameters online learning and recognition, and achieves to output interactive behavior probabilities of AVs. Quantitative analysis employing naturalistic driving datasets (highD and exiD) and real-vehicle test data validates the model's high consistency with human decision-making. In 188 tested interaction scenarios, the average human-like similarity rate is 81.73%, with a notable 83.12% in the highD dataset. Furthermore, in 145 dynamic interactions, the method matches human decisions at 77.12%, with 6913 consistence instances. Moreover, in real-vehicle tests, a 72.73% similarity with 0% safety violations are obtained. Results demonstrate the effectiveness of our proposed method in enabling AVs to make informed adaptive behavior decisions in interactive environments.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at //github.com/Katou2/CSTP.

北京阿比特科技有限公司