亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The machine learning explosion has created a prominent trend in modern computer hardware towards low precision floating-point operations. In response, there have been growing efforts to use low and mixed precision in general scientific computing. One important area that has received limited exploration is time-integration methods, which are used for solving differential equations that are ubiquitous in science and engineering applications. In this work, we develop two new approaches for leveraging mixed precision in exponential time integration methods. The first approach is based on a reformulation of the exponential Rosenbrock--Euler method allowing for low precision computations in matrix exponentials independent of the particular algorithm for matrix exponentiation. The second approach is based on an inexact and incomplete Arnoldi procedure in Krylov approximation methods for computing matrix exponentials and is agnostic to the chosen integration method. We show that both approaches improve accuracy compared to using purely low precision and offer better efficiency than using only double precision when solving an advection-diffusion-reaction partial differential equation.

相關內容

Model stealing attacks have become a serious concern for deep learning models, where an attacker can steal a trained model by querying its black-box API. This can lead to intellectual property theft and other security and privacy risks. The current state-of-the-art defenses against model stealing attacks suggest adding perturbations to the prediction probabilities. However, they suffer from heavy computations and make impracticable assumptions about the adversary. They often require the training of auxiliary models. This can be time-consuming and resource-intensive which hinders the deployment of these defenses in real-world applications. In this paper, we propose a simple yet effective and efficient defense alternative. We introduce a heuristic approach to perturb the output probabilities. The proposed defense can be easily integrated into models without additional training. We show that our defense is effective in defending against three state-of-the-art stealing attacks. We evaluate our approach on large and quantized (i.e., compressed) Convolutional Neural Networks (CNNs) trained on several vision datasets. Our technique outperforms the state-of-the-art defenses with a $\times37$ faster inference latency without requiring any additional model and with a low impact on the model's performance. We validate that our defense is also effective for quantized CNNs targeting edge devices.

Deep reinforcement learning (DRL) has proven extremely useful in a large variety of application domains. However, even successful DRL-based software can exhibit highly undesirable behavior. This is due to DRL training being based on maximizing a reward function, which typically captures general trends but cannot precisely capture, or rule out, certain behaviors of the system. In this paper, we propose a novel framework aimed at drastically reducing the undesirable behavior of DRL-based software, while maintaining its excellent performance. In addition, our framework can assist in providing engineers with a comprehensible characterization of such undesirable behavior. Under the hood, our approach is based on extracting decision tree classifiers from erroneous state-action pairs, and then integrating these trees into the DRL training loop, penalizing the system whenever it performs an error. We provide a proof-of-concept implementation of our approach, and use it to evaluate the technique on three significant case studies. We find that our approach can extend existing frameworks in a straightforward manner, and incurs only a slight overhead in training time. Further, it incurs only a very slight hit to performance, or even in some cases - improves it, while significantly reducing the frequency of undesirable behavior.

Transaction fee mechanism design is a new decentralized mechanism design problem where users bid for space on the blockchain. Several recent works showed that the transaction fee mechanism design fundamentally departs from classical mechanism design. They then systematically explored the mathematical landscape of this new decentralized mechanism design problem in two settings: in the plain setting where no cryptography is employed, and in a cryptography-assisted setting where the rules of the mechanism are enforced by a multi-party computation protocol. Unfortunately, in both settings, prior works showed that if we want the mechanism to incentivize honest behavior for both users as well as miners (possibly colluding with users), then the miner revenue has to be zero. Although adopting a relaxed, approximate notion of incentive compatibility gets around this zero miner-revenue limitation, the scaling of the miner revenue is nonetheless poor. In this paper, we show that if we make a mildly stronger reasonable-world assumption than prior works, we can circumvent the known limitations on miner revenue, and design auctions that generate optimal miner revenue. We also systematically explore the mathematical landscape of transaction fee mechanism design under the new reasonable-world and demonstrate how such assumptions can alter the feasibility and infeasibility landscape.

The deep learning technique has been shown to be effectively addressed several image analysis tasks in the computer-aided diagnosis scheme for mammography. The training of an efficacious deep learning model requires large data with diverse styles and qualities. The diversity of data often comes from the use of various scanners of vendors. But, in practice, it is impractical to collect a sufficient amount of diverse data for training. To this end, a novel contrastive learning is developed to equip the deep learning models with better style generalization capability. Specifically, the multi-style and multi-view unsupervised self-learning scheme is carried out to seek robust feature embedding against style diversity as a pretrained model. Afterward, the pretrained network is further fine-tuned to the downstream tasks, e.g., mass detection, matching, BI-RADS rating, and breast density classification. The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets. The experimental results suggest that the proposed domain generalization method can effectively improve performance of four mammographic image tasks on the data from both seen and unseen domains, and outperform many state-of-the-art (SOTA) generalization methods.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司