Let $ \bbB_n =\frac{1}{n}(\bbR_n + \bbT^{1/2}_n \bbX_n)(\bbR_n + \bbT^{1/2}_n \bbX_n)^* $ where $ \bbX_n $ is a $ p \times n $ matrix with independent standardized random variables, $ \bbR_n $ is a $ p \times n $ non-random matrix, representing the information, and $ \bbT_{n} $ is a $ p \times p $ non-random nonnegative definite Hermitian matrix. Under some conditions on $ \bbR_n \bbR_n^* $ and $ \bbT_n $, it has been proved that for any closed interval outside the support of the limit spectral distribution, with probability one there will be no eigenvalues falling in this interval for all $ p $ sufficiently large. The purpose of this paper is to carry on with the study of the support of the limit spectral distribution, and we show that there is an exact separation phenomenon: with probability one, the proper number of eigenvalues lie on either side of these intervals.
The reconfiguration graph $\mathcal{C}_k(G)$ for the $k$-colourings of a graph $G$ has a vertex for each proper $k$-colouring of $G$, and two vertices of $\mathcal{C}_k(G)$ are adjacent precisely when those $k$-colourings differ on a single vertex of $G$. Much work has focused on bounding the maximum value of ${\rm{diam}}~\mathcal{C}_k(G)$ over all $n$-vertex graphs $G$. We consider the analogous problems for list colourings and for correspondence colourings. We conjecture that if $L$ is a list-assignment for a graph $G$ with $|L(v)|\ge d(v)+2$ for all $v\in V(G)$, then ${\rm{diam}}~\mathcal{C}_L(G)\le n(G)+\mu(G)$. We also conjecture that if $(L,H)$ is a correspondence cover for a graph $G$ with $|L(v)|\ge d(v)+2$ for all $v\in V(G)$, then ${\rm{diam}}~\mathcal{C}_{(L,H)}(G)\le n(G)+\tau(G)$. (Here $\mu(G)$ and $\tau(G)$ denote the matching number and vertex cover number of $G$.) For every graph $G$, we give constructions showing that both conjectures are best possible. Our first main result proves the upper bounds (for the list and correspondence versions, respectively) ${\rm{diam}}~\mathcal{C}_L(G)\le n(G)+2\mu(G)$ and ${\rm{diam}}~\mathcal{C}_{(L,H)}(G)\le n(G)+2\tau(G)$. Our second main result proves that both conjectured bounds hold, whenever all $v$ satisfy $|L(v)|\ge 2d(v)+1$. We conclude by proving one or both conjectures for various classes of graphs such as complete bipartite graphs, subcubic graphs, cactuses, and graphs with bounded maximum average degree.
We give an isomorphism test for graphs of Euler genus $g$ running in time $2^{O(g^4 \log g)}n^{O(1)}$. Our algorithm provides the first explicit upper bound on the dependence on $g$ for an fpt isomorphism test parameterized by the Euler genus of the input graphs. The only previous fpt algorithm runs in time $f(g)n$ for some function $f$ (Kawarabayashi 2015). Actually, our algorithm even works when the input graphs only exclude $K_{3,h}$ as a minor. For such graphs, no fpt isomorphism test was known before. The algorithm builds on an elegant combination of simple group-theoretic, combinatorial, and graph-theoretic approaches. In particular, we introduce $(t,k)$-WL-bounded graphs which provide a powerful tool to combine group-theoretic techniques with the standard Weisfeiler-Leman algorithm. This concept may be of independent interest.
The Geometric Bin Packing (GBP) problem is a generalization of Bin Packing where the input is a set of $d$-dimensional rectangles, and the goal is to pack them into unit $d$-dimensional cubes efficiently. It is NP-Hard to obtain a PTAS for the problem, even when $d=2$. For general $d$, the best-known approximation algorithm has an approximation guarantee exponential in $d$, while the best hardness of approximation is still a small constant inapproximability from the case when $d=2$. In this paper, we show that the problem cannot be approximated within $d^{1-\epsilon}$ factor unless NP=ZPP. Recently, $d$-dimensional Vector Bin Packing, a closely related problem to the GBP, was shown to be hard to approximate within $\Omega(\log d)$ when $d$ is a fixed constant, using a notion of Packing Dimension of set families. In this paper, we introduce a geometric analog of it, the Geometric Packing Dimension of set families. While we fall short of obtaining similar inapproximability results for the Geometric Bin Packing problem when $d$ is fixed, we prove a couple of key properties of the Geometric Packing Dimension which highlight fundamental differences between Geometric Bin Packing and Vector Bin Packing.
We propose an efficient $\epsilon$-differentially private algorithm, that given a simple {\em weighted} $n$-vertex, $m$-edge graph $G$ with a \emph{maximum unweighted} degree $\Delta(G) \leq n-1$, outputs a synthetic graph which approximates the spectrum with $\widetilde{O}(\min\{\Delta(G), \sqrt{n}\})$ bound on the purely additive error. To the best of our knowledge, this is the first $\epsilon$-differentially private algorithm with a non-trivial additive error for approximating the spectrum of the graph. One of the subroutines of our algorithm also precisely simulates the exponential mechanism over a non-convex set, which could be of independent interest given the recent interest in sampling from a {\em log-concave distribution} defined over a convex set. Spectral approximation also allows us to approximate all possible $(S,T)$-cuts, but it incurs an error that depends on the maximum degree, $\Delta(G)$. We further show that using our sampler, we can also output a synthetic graph that approximates the sizes of all $(S,T)$-cuts on $n$ vertices weighted graph $G$ with $m$ edges while preserving $(\epsilon,\delta)$-differential privacy and an additive error of $\widetilde{O}(\sqrt{mn}/\epsilon)$. We also give a matching lower bound (with respect to all the parameters) on the private cut approximation for weighted graphs. This removes the gap of $\sqrt{W_{\mathsf{avg}}}$ in the upper and lower bound in Eli{\'a}{\v{s}}, Kapralov, Kulkarni, and Lee (SODA 2020), where $W_{\mathsf{avg}}$ is the average edge weight.
The basic reproduction number of a networked epidemic model, denoted $R_0$, can be computed from a network's topology to quantify epidemic spread. However, disclosure of $R_0$ risks revealing sensitive information about the underlying network, such as an individual's relationships within a social network. Therefore, we propose a framework to compute and release $R_0$ in a differentially private way. First, we provide a new result that shows how $R_0$ can be used to bound the level of penetration of an epidemic within a single community as a motivation for the need of privacy, which may also be of independent interest. We next develop a privacy mechanism to formally safeguard the edge weights in the underlying network when computing $R_0$. Then we formalize tradeoffs between the level of privacy and the accuracy of values of the privatized $R_0$. To show the utility of the private $R_0$ in practice, we use it to bound this level of penetration under privacy, and concentration bounds on these analyses show they remain accurate with privacy implemented. We apply our results to real travel data gathered during the spread of COVID-19, and we show that, under real-world conditions, we can compute $R_0$ in a differentially private way while incurring errors as low as $7.6\%$ on average.
Given a graph $G$ and an integer $b$, Bandwidth asks whether there exists a bijection $\pi$ from $V(G)$ to $\{1, \ldots, |V(G)|\}$ such that $\max_{\{u, v \} \in E(G)} | \pi(u) - \pi(v) | \leq b$. This is a classical NP-complete problem, known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally known to be W[1]-hard when parameterized by the treedepth of the input graph. In contrast, the problem does become FPT when parameterized by the vertex cover number of the input graph. In this paper, we make progress towards the parameterized (in)tractability of Bandwidth. We first show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique number $\omega$ of the input graph, thus generalizing the previously mentioned result for vertex cover. On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our results generalize some of the previous results and narrow some of the complexity gaps.
The grounded Laplacian matrix $\LL_{-S}$ of a graph $\calG=(V,E)$ with $n=|V|$ nodes and $m=|E|$ edges is a $(n-s)\times (n-s)$ submatrix of its Laplacian matrix $\LL$, obtained from $\LL$ by deleting rows and columns corresponding to $s=|S| \ll n $ ground nodes forming set $S\subset V$. The smallest eigenvalue of $\LL_{-S}$ plays an important role in various practical scenarios, such as characterizing the convergence rate of leader-follower opinion dynamics, with a larger eigenvalue indicating faster convergence of opinion. In this paper, we study the problem of adding $k \ll n$ edges among all the nonexistent edges forming the candidate edge set $Q = (V\times V)\backslash E$, in order to maximize the smallest eigenvalue of the grounded Laplacian matrix. We show that the objective function of the combinatorial optimization problem is monotone but non-submodular. To solve the problem, we first simplify the problem by restricting the candidate edge set $Q$ to be $(S\times (V\backslash S))\backslash E$, and prove that it has the same optimal solution as the original problem, although the size of set $Q$ is reduced from $O(n^2)$ to $O(n)$. Then, we propose two greedy approximation algorithms. One is a simple greedy algorithm with an approximation ratio $(1-e^{-\alpha\gamma})/\alpha$ and time complexity $O(kn^4)$, where $\gamma$ and $\alpha$ are, respectively, submodularity ratio and curvature, whose bounds are provided for some particular cases. The other is a fast greedy algorithm without approximation guarantee, which has a running time $\tilde{O}(km)$, where $\tilde{O}(\cdot)$ suppresses the ${\rm poly} (\log n)$ factors. Numerous experiments on various real networks are performed to validate the superiority of our algorithms, in terms of effectiveness and efficiency.
Given an undirected graph $G$ and a multiset of $k$ terminal pairs $\mathcal{X}$, the Vertex-Disjoint Paths (\VDP) and Edge-Disjoint Paths (\EDP) problems ask whether $G$ has $k$ pairwise internally vertex-disjoint paths and $k$ pairwise edge-disjoint paths, respectively, connecting every terminal pair in~$\mathcal{X}$. In this paper, we study the kernelization complexity of \VDP~and~\EDP~on subclasses of chordal graphs. For \VDP, we design a $4k$ vertex kernel on split graphs and an $\mathcal{O}(k^2)$ vertex kernel on well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable on threshold graphs. For \textsc{EDP}, we first prove that the problem is $\mathsf{NP}$-complete on complete graphs. Then, we design an $\mathcal{O}(k^{2.75})$ vertex kernel for \EDP~on split graphs, and improve it to a $7k+1$ vertex kernel on threshold graphs. Lastly, we provide an $\mathcal{O}(k^2)$ vertex kernel for \EDP~on block graphs and a $2k+1$ vertex kernel for clique paths. Our contributions improve upon several results in the literature, as well as resolve an open question by Heggernes et al.~[Theory Comput. Syst., 2015].
It is shown in this note that approximating the number of independent sets in a $k$-uniform linear hypergraph with maximum degree at most $\Delta$ is NP-hard if $\Delta\geq 5\cdot 2^{k-1}+1$. This confirms that for the relevant sampling and approximate counting problems, the regimes on the maximum degree where the state-of-the-art algorithms work are tight, up to some small factors. These algorithms include: the approximate sampler and randomised approximation scheme by Hermon, Sly and Zhang (RSA, 2019), the perfect sampler by Qiu, Wang and Zhang (ICALP, 2022), and the deterministic approximation scheme by Feng, Guo, Wang, Wang and Yin (FOCS, 2023).
A combinatorial problem concerning the maximum size of the (hamming) weight set of an $[n,k]_q$ linear code was recently introduced. Codes attaining the established upper bound are the Maximum Weight Spectrum (MWS) codes. Those $[n,k]_q $ codes with the same weight set as $ \mathbb{F}_q^n $ are called Full Weight Spectrum (FWS) codes. FWS codes are necessarily ``short", whereas MWS codes are necessarily ``long". For fixed $ k,q $ the values of $ n $ for which an $ [n,k]_q $-FWS code exists are completely determined, but the determination of the minimum length $ M(H,k,q) $ of an $ [n,k]_q $-MWS code remains an open problem. The current work broadens discussion first to general coordinate-wise weight functions, and then specifically to the Lee weight and a Manhattan like weight. In the general case we provide bounds on $ n $ for which an FWS code exists, and bounds on $ n $ for which an MWS code exists. When specializing to the Lee or to the Manhattan setting we are able to completely determine the parameters of FWS codes. As with the Hamming case, we are able to provide an upper bound on $ M(\mathcal{L},k,q) $ (the minimum length of Lee MWS codes), and pose the determination of $ M(\mathcal{L},k,q) $ as an open problem. On the other hand, with respect to the Manhattan weight we completely determine the parameters of MWS codes.