亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optical coherence tomography (OCT) suffers from speckle noise, causing the deterioration of image quality, especially in high-resolution modalities like visible light OCT (vis-OCT). The potential of conventional supervised deep learning denoising methods is limited by the difficulty of obtaining clean data. Here, we proposed an innovative self-supervised strategy called Sub2Full (S2F) for OCT despeckling without clean data. This approach works by acquiring two repeated B-scans, splitting the spectrum of the first repeat as a low-resolution input, and utilizing the full spectrum of the second repeat as the high-resolution target. The proposed method was validated on vis-OCT retinal images visualizing sublaminar structures in outer retina and demonstrated superior performance over conventional Noise2Noise and Noise2Void schemes. The code is available at //github.com/PittOCT/Sub2Full-OCT-Denoising.

相關內容

We propose an algorithm which predicts each subsequent time step relative to the previous timestep of intractable short rate model (when adjusted for drift and overall distribution of previous percentile result) and show that the method achieves superior outcomes to the unbiased estimate both on the trained dataset and different validation data.

Modeling collective motion in multi-agent systems has gained much attention in recent years. In particular, of interest are the conditions under which flocking dynamics emerges. We present a generalization of the multi-agent model of Olfati--Saber with nonlinear navigational feedback forces. As opposed to the original model, our model is, in general, not dissipative. This makes obtaining sufficient conditions for flocking challenging due to the absence of an obvious choice of a Lyapunov function. By means of an alternative argument, we show that our model possesses a global attractor when the navigational feedback forces are bounded perturbations of the linear ones. We further demonstrate that, under mild conditions, the dynamics of the group converges to a complete velocity consensus at an exponential rate. We show that the attractor of a dissipative system can contain non-equilibrium solutions. We construct explicit examples of such solutions and obtain conditions under which they cannot exist. In addition, we present a case study of the energy efficiency of our model. We show how nonlinear navigational feedback forces, which possess flexibility that linear forces lack, can be used to reduce on-board energy consumption.

In large-scale, data-driven applications, parameters are often only known approximately due to noise and limited data samples. In this paper, we focus on high-dimensional optimization problems with linear constraints under uncertain conditions. To find high quality solutions for which the violation of the true constraints is limited, we develop a linear shrinkage method that blends random matrix theory and robust optimization principles. It aims to minimize the Frobenius distance between the estimated and the true parameter matrix, especially when dealing with a large and comparable number of constraints and variables. This data-driven method excels in simulations, showing superior noise resilience and more stable performance in both obtaining high quality solutions and adhering to the true constraints compared to traditional robust optimization. Our findings highlight the effectiveness of our method in improving the robustness and reliability of optimization in high-dimensional, data-driven scenarios.

Fully-strict fork-join parallelism is a powerful model for shared-memory programming due to its optimal time scaling and strong bounds on memory scaling. The latter is rarely achieved due to the difficulty of implementing continuation stealing in traditional High Performance Computing (HPC) languages -- where it is often impossible without modifying the compiler or resorting to non-portable techniques. We demonstrate how stackless coroutines (a new feature in C++20) can enable fully-portable continuation stealing and present libfork a lock-free fine-grained parallelism library, combining coroutines with user-space, geometric segmented-stacks. We show our approach is able to achieve optimal time/memory scaling, both theoretically and empirically, across a variety of benchmarks. Compared to openMP (libomp), libfork is on average 7.2x faster and consumes 10x less memory. Similarly, compared to Intel's TBB, libfork is on average 2.7x faster and consumes 6.2x less memory. Additionally, we introduce non-uniform memory access (NUMA) optimizations for schedulers that demonstrate performance matching busy-waiting schedulers.

This study investigates the applicability of Kirchhoff migration (KM) for a fast identification of unknown objects in a real-world limited-aperture inverse scattering problem. To demonstrate the theoretical basis for the applicability including unique determination of objects, the imaging function of the KM was formulated using a uniformly convergent infinite series of Bessel functions of integer order of the first kind based on the integral equation formula for the scattered field. Numerical simulations performed using the experimental Fresnel dataset are exhibited to achieve the theoretical results.

Bayesian statistical graphical models are typically either continuous and parametric (Gaussian, parameterized by the graph-dependent precision matrix with Wishart-type priors) or discrete and non-parametric (with graph-dependent structure of probabilities of cells and Dirichlet-type priors). We propose to break this dichotomy by introducing two discrete parametric graphical models on finite decomposable graphs: the graph negative multinomial and the graph multinomial distributions. These models interpolate between the product of univariate negative binomial laws and the negative multinomial distribution, and between the product of binomial laws and the multinomial distribution, respectively. We derive their Markov decomposition and present related probabilistic models representations. We also introduce graphical versions of the Dirichlet distribution and inverted Dirichlet distribution, which serve as conjugate priors for the two discrete graphical Markov models. We derive explicit normalizing constants for both graphical Dirichlet laws and demonstrate that their independence structure (a graphical version of neutrality) yields a strong hyper Markov property for both Bayesian models. We also provide characterization theorems for graphical Dirichlet laws via strong hyper Markov property. Finally, we develop a model selection procedure for the Bayesian graphical negative multinomial model with respective Dirichlet-type priors.

With the growing demand of mineral consumption, the management of the mining waste is crucial. Cemented paste backfill (CPB) is one of the techniques developed by the mining industry to fill the voids generated by the excavation of underground spaces. The CPB process is the subject of various studies aimed at optimizing its implementation in the field. In this article, we focus on the modelling of the backfill phase where it has been shown in [Vigneaux et al., Cem. Concr. Res. 164 (2023) 107038] that a viscoplastic lubrication model can be used to describe CPB experiments. The aim here is to propose an accelerated method for performing the parameters' estimation of the properties of the paste (typically its rheological properties), with an inverse problem procedure based on observed height profiles of the paste. The inversion procedure is based on a metamodel built from an initial partial differential equation model, thanks to a Polynomial Chaos Expansion coupled with a Principal Component Analysis.

Evaluating the Expected Information Gain (EIG) is a critical task in many areas of computational science and statistics, necessitating the approximation of nested integrals. Available techniques for this problem based on Quasi-Monte Carlo (QMC) methods have primarily focused on enhancing the efficiency of the inner integral approximation. In this work, we introduce a novel approach that extends the scope of these efforts to address inner and outer expectations simultaneously. Leveraging the principles of Owen's scrambling, we develop a randomized quasi-Monte Carlo (RQMC) method that improves the approximation of nested integrals. We also indicate how to combine this methodology with Importance Sampling to address a measure concentration arising in the inner integral. Our RQMC method capitalizes on the unique structure of nested expectations to offer a more efficient approximation mechanism. By incorporating Owen's scrambling techniques, we handle integrands exhibiting infinite variation in the Hardy-Krause (HK) sense, paving the way for theoretically sound error estimates. We derive asymptotic error bounds for the bias and variance of our estimator. In addition, we provide nearly optimal sample sizes for the inner and outer RQMC approximations, which are helpful for the actual numerical implementations. We verify the quality of our estimator through numerical experiments in the context of Bayesian optimal experimental design. Specifically, we compare the computational efficiency of our RQMC method against standard nested Monte Carlo integration across two case studies: one in thermo-mechanics and the other in pharmacokinetics. These examples highlight our approach's computational savings and enhanced applicability, showcasing the advantages of estimating the Expected Information Gain with greater efficiency and reduced computational cost.

Data augmentation (DA) is a powerful workhorse for bolstering performance in modern machine learning. Specific augmentations like translations and scaling in computer vision are traditionally believed to improve generalization by generating new (artificial) data from the same distribution. However, this traditional viewpoint does not explain the success of prevalent augmentations in modern machine learning (e.g. randomized masking, cutout, mixup), that greatly alter the training data distribution. In this work, we develop a new theoretical framework to characterize the impact of a general class of DA on underparameterized and overparameterized linear model generalization. Our framework reveals that DA induces implicit spectral regularization through a combination of two distinct effects: a) manipulating the relative proportion of eigenvalues of the data covariance matrix in a training-data-dependent manner, and b) uniformly boosting the entire spectrum of the data covariance matrix through ridge regression. These effects, when applied to popular augmentations, give rise to a wide variety of phenomena, including discrepancies in generalization between over-parameterized and under-parameterized regimes and differences between regression and classification tasks. Our framework highlights the nuanced and sometimes surprising impacts of DA on generalization, and serves as a testbed for novel augmentation design.

Degradation of image quality due to the presence of haze is a very common phenomenon. Existing DehazeNet [3], MSCNN [11] tackled the drawbacks of hand crafted haze relevant features. However, these methods have the problem of color distortion in gloomy (poor illumination) environment. In this paper, a cardinal (red, green and blue) color fusion network for single image haze removal is proposed. In first stage, network fusses color information present in hazy images and generates multi-channel depth maps. The second stage estimates the scene transmission map from generated dark channels using multi channel multi scale convolutional neural network (McMs-CNN) to recover the original scene. To train the proposed network, we have used two standard datasets namely: ImageNet [5] and D-HAZY [1]. Performance evaluation of the proposed approach has been carried out using structural similarity index (SSIM), mean square error (MSE) and peak signal to noise ratio (PSNR). Performance analysis shows that the proposed approach outperforms the existing state-of-the-art methods for single image dehazing.

北京阿比特科技有限公司