Diffusion-based models are widely recognized for their effectiveness in image restoration tasks; however, their iterative denoising process, which begins from Gaussian noise, often results in slow inference speeds. The Image-to-Image Schr\"odinger Bridge (I$^2$SB) presents a promising alternative by starting the generative process from corrupted images and leveraging training techniques from score-based diffusion models. In this paper, we introduce the Implicit Image-to-Image Schr\"odinger Bridge (I$^3$SB) to further accelerate the generative process of I$^2$SB. I$^3$SB reconfigures the generative process into a non-Markovian framework by incorporating the initial corrupted image into each step, while ensuring that the marginal distribution aligns with that of I$^2$SB. This allows for the direct use of the pretrained network from I$^2$SB. Extensive experiments on natural images, human face images, and medical images validate the acceleration benefits of I$^3$SB. Compared to I$^2$SB, I$^3$SB achieves the same perceptual quality with fewer generative steps, while maintaining equal or improved fidelity to the ground truth.
Text-to-image diffusion models sometimes depict blended concepts in the generated images. One promising use case of this effect would be the nonword-to-image generation task which attempts to generate images intuitively imaginable from a non-existing word (nonword). To realize nonword-to-image generation, an existing study focused on associating nonwords with similar-sounding words. Since each nonword can have multiple similar-sounding words, generating images containing their blended concepts would increase intuitiveness, facilitating creative activities and promoting computational psycholinguistics. Nevertheless, no existing study has quantitatively evaluated this effect in either diffusion models or the nonword-to-image generation paradigm. Therefore, this paper first analyzes the conceptual blending in a pretrained diffusion model, Stable Diffusion. The analysis reveals that a high percentage of generated images depict blended concepts when inputting an embedding interpolating between the text embeddings of two text prompts referring to different concepts. Next, this paper explores the best text embedding space conversion method of an existing nonword-to-image generation framework to ensure both the occurrence of conceptual blending and image generation quality. We compare the conventional direct prediction approach with the proposed method that combines $k$-nearest neighbor search and linear regression. Evaluation reveals that the enhanced accuracy of the embedding space conversion by the proposed method improves the image generation quality, while the emergence of conceptual blending could be attributed mainly to the specific dimensions of the high-dimensional text embedding space.
Diffeomorphic image registration is crucial for various medical imaging applications because it can preserve the topology of the transformation. This study introduces DCCNN-LSTM-Reg, a learning framework that evolves dynamically and learns a symmetrical registration path by satisfying a specified control increment system. This framework aims to obtain symmetric diffeomorphic deformations between moving and fixed images. To achieve this, we combine deep learning networks with diffeomorphic mathematical mechanisms to create a continuous and dynamic registration architecture, which consists of multiple Symmetric Registration (SR) modules cascaded on five different scales. Specifically, our method first uses two U-nets with shared parameters to extract multiscale feature pyramids from the images. We then develop an SR-module comprising a sequential CNN-LSTM architecture to progressively correct the forward and reverse multiscale deformation fields using control increment learning and the homotopy continuation technique. Through extensive experiments on three 3D registration tasks, we demonstrate that our method outperforms existing approaches in both quantitative and qualitative evaluations.
Passive non-line-of-sight (NLOS) imaging has witnessed rapid development in recent years, due to its ability to image objects that are out of sight. The light transport condition plays an important role in this task since changing the conditions will lead to different imaging models. Existing learning-based NLOS methods usually train independent models for different light transport conditions, which is computationally inefficient and impairs the practicality of the models. In this work, we propose NLOS-LTM, a novel passive NLOS imaging method that effectively handles multiple light transport conditions with a single network. We achieve this by inferring a latent light transport representation from the projection image and using this representation to modulate the network that reconstructs the hidden image from the projection image. We train a light transport encoder together with a vector quantizer to obtain the light transport representation. To further regulate this representation, we jointly learn both the reconstruction network and the reprojection network during training. A set of light transport modulation blocks is used to modulate the two jointly trained networks in a multi-scale way. Extensive experiments on a large-scale passive NLOS dataset demonstrate the superiority of the proposed method. The code is available at //github.com/JerryOctopus/NLOS-LTM.
Adapting pretrained image-based diffusion models to generate temporally consistent videos has become an impactful generative modeling research direction. Training-free noise-space manipulation has proven to be an effective technique, where the challenge is to preserve the Gaussian white noise distribution while adding in temporal consistency. Recently, Chang et al. (2024) formulated this problem using an integral noise representation with distribution-preserving guarantees, and proposed an upsampling-based algorithm to compute it. However, while their mathematical formulation is advantageous, the algorithm incurs a high computational cost. Through analyzing the limiting-case behavior of their algorithm as the upsampling resolution goes to infinity, we develop an alternative algorithm that, by gathering increments of multiple Brownian bridges, achieves their infinite-resolution accuracy while simultaneously reducing the computational cost by orders of magnitude. We prove and experimentally validate our theoretical claims, and demonstrate our method's effectiveness in real-world applications. We further show that our method readily extends to the 3-dimensional space.
Recent advancements in text-to-image diffusion models have enabled the personalization of these models to generate custom images from textual prompts. This paper presents an efficient LoRA-based personalization approach for on-device subject-driven generation, where pre-trained diffusion models are fine-tuned with user-specific data on resource-constrained devices. Our method, termed Hollowed Net, enhances memory efficiency during fine-tuning by modifying the architecture of a diffusion U-Net to temporarily remove a fraction of its deep layers, creating a hollowed structure. This approach directly addresses on-device memory constraints and substantially reduces GPU memory requirements for training, in contrast to previous methods that primarily focus on minimizing training steps and reducing the number of parameters to update. Additionally, the personalized Hollowed Net can be transferred back into the original U-Net, enabling inference without additional memory overhead. Quantitative and qualitative analyses demonstrate that our approach not only reduces training memory to levels as low as those required for inference but also maintains or improves personalization performance compared to existing methods.
In ports, a variety of tasks are carried out, and scheduling these tasks is crucial due to its significant impact on productivity, making the generation of precise plans essential. This study proposes a method to solve the Quay Crane Scheduling Problem (QCSP), a representative task scheduling problem in ports known to be NP-Hard, more quickly and accurately. First, the study suggests a method to create more accurate work plans for Quay Cranes (QCs) by learning from actual port data to accurately predict the working speed of QCs. Next, a Surrogate Model is proposed by combining a Machine Learning (ML) model with a Genetic Algorithm (GA), which is widely used to solve complex optimization problems, enabling faster and more precise exploration of solutions. Unlike methods that use fixed-dimensional chromosome encoding, the proposed methodology can provide solutions for encodings of various dimensions. To validate the performance of the newly proposed methodology, comparative experiments were conducted, demonstrating faster search speeds and improved fitness scores. The method proposed in this study can be applied not only to QCSP but also to various NP-Hard problems, and it opens up possibilities for the further development of advanced search algorithms by combining heuristic algorithms with ML models.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.