Secure aggregation promises a heightened level of privacy in federated learning, maintaining that a server only has access to a decrypted aggregate update. Within this setting, linear layer leakage methods are the only data reconstruction attacks able to scale and achieve a high leakage rate regardless of the number of clients or batch size. This is done through increasing the size of an injected fully-connected (FC) layer. However, this results in a resource overhead which grows larger with an increasing number of clients. We show that this resource overhead is caused by an incorrect perspective in all prior work that treats an attack on an aggregate update in the same way as an individual update with a larger batch size. Instead, by attacking the update from the perspective that aggregation is combining multiple individual updates, this allows the application of sparsity to alleviate resource overhead. We show that the use of sparsity can decrease the model size overhead by over 327$\times$ and the computation time by 3.34$\times$ compared to SOTA while maintaining equivalent total leakage rate, 77% even with $1000$ clients in aggregation.
Online continual learning (OCL) research has primarily focused on mitigating catastrophic forgetting with fixed and limited storage allocation throughout the agent's lifetime. However, the growing affordability of data storage highlights a broad range of applications that do not adhere to these assumptions. In these cases, the primary concern lies in managing computational expenditures rather than storage. In this paper, we target such settings, investigating the online continual learning problem by relaxing storage constraints and emphasizing fixed, limited economical budget. We provide a simple algorithm that can compactly store and utilize the entirety of the incoming data stream under tiny computational budgets using a kNN classifier and universal pre-trained feature extractors. Our algorithm provides a consistency property attractive to continual learning: It will never forget past seen data. We set a new state of the art on two large-scale OCL datasets: Continual LOCalization (CLOC), which has 39M images over 712 classes, and Continual Google Landmarks V2 (CGLM), which has 580K images over 10,788 classes -- beating methods under far higher computational budgets than ours in terms of both reducing catastrophic forgetting of past data and quickly adapting to rapidly changing data streams. We provide code to reproduce our results at \url{//github.com/drimpossible/ACM}.
In this paper we give an overview of the graph invariants queue number and stack number (the latter also called the page number or book thickness). Due to their similarity, it has been studied for a long time, whether one of them is bounded in terms of the other. It is now known that the stack number is not bounded by the queue number. We present a simplified proof of this result. We also survey the known results about possible stack number bound on the queue number. This preprint is a rework of the bachelor thesis [29].
Backpropagation (BP) is the most important gradient estimation method for training neural networks in deep learning. However, the literature shows that neural networks trained by BP are vulnerable to adversarial attacks. We develop the likelihood ratio (LR) method, a new gradient estimation method, for training a broad range of neural network architectures, including convolutional neural networks, recurrent neural networks, graph neural networks, and spiking neural networks, without recursive gradient computation. We propose three methods to efficiently reduce the variance of the gradient estimation in the neural network training process. Our experiments yield numerical results for training different neural networks on several datasets. All results demonstrate that the LR method is effective for training various neural networks and significantly improves the robustness of the neural networks under adversarial attacks relative to the BP method.
Cross-silo federated learning (FL) enables multiple clients to collaboratively train a machine learning model without sharing training data, but privacy in FL remains a major challenge. Techniques using homomorphic encryption (HE) have been designed to solve this but bring their own challenges. Many techniques using single-key HE (SKHE) require clients to fully trust each other to prevent privacy disclosure between clients. However, fully trusted clients are hard to ensure in practice. Other techniques using multi-key HE (MKHE) aim to protect privacy from untrusted clients but lead to the disclosure of training results in public channels by untrusted third parties, e.g., the public cloud server. Besides, MKHE has higher computation and communication complexity compared with SKHE. We present a new FL protocol ESAFL that leverages a novel efficient and secure additively HE (ESHE) based on the hard problem of ring learning with errors. ESAFL can ensure the security of training data between untrusted clients and protect the training results against untrusted third parties. In addition, theoretical analyses present that ESAFL outperforms current techniques using MKHE in computation and communication, and intensive experiments show that ESAFL achieves approximate 204 times-953 times and 11 times-14 times training speedup while reducing the communication burden by 77 times-109 times and 1.25 times-2 times compared with the state-of-the-art FL models using SKHE.
In traditional machine learning, it is trivial to conduct model evaluation since all data samples are managed centrally by a server. However, model evaluation becomes a challenging problem in federated learning (FL), which is called federated evaluation in this work. This is because clients do not expose their original data to preserve data privacy. Federated evaluation plays a vital role in client selection, incentive mechanism design, malicious attack detection, etc. In this paper, we provide the first comprehensive survey of existing federated evaluation methods. Moreover, we explore various applications of federated evaluation for enhancing FL performance and finally present future research directions by envisioning some challenges.
Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.
The cyber-threat landscape has evolved tremendously in recent years, with new threat variants emerging daily, and large-scale coordinated campaigns becoming more prevalent. In this study, we propose CELEST (CollaborativE LEarning for Scalable Threat detection), a federated machine learning framework for global threat detection over HTTP, which is one of the most commonly used protocols for malware dissemination and communication. CELEST leverages federated learning in order to collaboratively train a global model across multiple clients who keep their data locally, thus providing increased privacy and confidentiality assurances. Through a novel active learning component integrated with the federated learning technique, our system continuously discovers and learns the behavior of new, evolving, and globally-coordinated cyber threats. We show that CELEST is able to expose attacks that are largely invisible to individual organizations. For instance, in one challenging attack scenario with data exfiltration malware, the global model achieves a three-fold increase in Precision-Recall AUC compared to the local model. We deploy CELEST on two university networks and show that it is able to detect the malicious HTTP communication with high precision and low false positive rates. Furthermore, during its deployment, CELEST detected a set of previously unknown 42 malicious URLs and 20 malicious domains in one day, which were confirmed to be malicious by VirusTotal.
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.