亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Object-centric representations using slots have shown the advances towards efficient, flexible and interpretable abstraction from low-level perceptual features in a compositional scene. Current approaches randomize the initial state of slots followed by an iterative refinement. As we show in this paper, the random slot initialization significantly affects the accuracy of the final slot prediction. Moreover, current approaches require a predetermined number of slots from prior knowledge of the data, which limits the applicability in the real world. In our work, we initialize the slot representations with clustering algorithms conditioned on the perceptual input features. This requires an additional layer in the architecture to initialize the slots given the identified clusters. We design permutation invariant and permutation equivariant versions of this layer to enable the exchangeable slot representations after clustering. Additionally, we employ mean-shift clustering to automatically identify the number of slots for a given scene. We evaluate our method on object discovery and novel view synthesis tasks with various datasets. The results show that our method outperforms prior works consistently, especially for complex scenes.

相關內容

Query-based methods have garnered significant attention in object detection since the advent of DETR, the pioneering end-to-end query-based detector. However, these methods face challenges like slow convergence and suboptimal performance. Notably, self-attention in object detection often hampers convergence due to its global focus. To address these issues, we propose FoLR, a transformer-like architecture with only decoders. We enhance the self-attention mechanism by isolating connections between irrelevant objects that makes it focus on local regions but not global regions. We also design the adaptive sampling method to extract effective features based on queries' local regions from feature maps. Additionally, we employ a look-back strategy for decoders to retain prior information, followed by the Feature Mixer module to fuse features and queries. Experimental results demonstrate FoLR's state-of-the-art performance in query-based detectors, excelling in convergence speed and computational efficiency.

The objective of Entity Alignment (EA) is to identify equivalent entity pairs from multiple Knowledge Graphs (KGs) and create a more comprehensive and unified KG. The majority of EA methods have primarily focused on the structural modality of KGs, lacking exploration of multi-modal information. A few multi-modal EA methods have made good attempts in this field. Still, they have two shortcomings: (1) inconsistent and inefficient modality modeling that designs complex and distinct models for each modality; (2) ineffective modality fusion due to the heterogeneous nature of modalities in EA. To tackle these challenges, we propose PathFusion, consisting of two main components: (1) MSP, a unified modeling approach that simplifies the alignment process by constructing paths connecting entities and modality nodes to represent multiple modalities; (2) IRF, an iterative fusion method that effectively combines information from different modalities using the path as an information carrier. Experimental results on real-world datasets demonstrate the superiority of PathFusion over state-of-the-art methods, with 22.4%-28.9% absolute improvement on Hits@1, and 0.194-0.245 absolute improvement on MRR.

Multi-camera 3D perception has emerged as a prominent research field in autonomous driving, offering a viable and cost-effective alternative to LiDAR-based solutions. The existing multi-camera algorithms primarily rely on monocular 2D pre-training. However, the monocular 2D pre-training overlooks the spatial and temporal correlations among the multi-camera system. To address this limitation, we propose the first multi-camera unified pre-training framework, called UniScene, which involves initially reconstructing the 3D scene as the foundational stage and subsequently fine-tuning the model on downstream tasks. Specifically, we employ Occupancy as the general representation for the 3D scene, enabling the model to grasp geometric priors of the surrounding world through pre-training. A significant benefit of UniScene is its capability to utilize a considerable volume of unlabeled image-LiDAR pairs for pre-training purposes. The proposed multi-camera unified pre-training framework demonstrates promising results in key tasks such as multi-camera 3D object detection and surrounding semantic scene completion. When compared to monocular pre-training methods on the nuScenes dataset, UniScene shows a significant improvement of about 2.0% in mAP and 2.0% in NDS for multi-camera 3D object detection, as well as a 3% increase in mIoU for surrounding semantic scene completion. By adopting our unified pre-training method, a 25% reduction in 3D training annotation costs can be achieved, offering significant practical value for the implementation of real-world autonomous driving. Codes are publicly available at //github.com/chaytonmin/UniScene.

Quality of Service (QoS) prediction is an essential task in recommendation systems, where accurately predicting unknown QoS values can improve user satisfaction. However, existing QoS prediction techniques may perform poorly in the presence of noise data, such as fake location information or virtual gateways. In this paper, we propose the Probabilistic Deep Supervision Network (PDS-Net), a novel framework for QoS prediction that addresses this issue. PDS-Net utilizes a Gaussian-based probabilistic space to supervise intermediate layers and learns probability spaces for both known features and true labels. Moreover, PDS-Net employs a condition-based multitasking loss function to identify objects with noise data and applies supervision directly to deep features sampled from the probability space by optimizing the Kullback-Leibler distance between the probability space of these objects and the real-label probability space. Thus, PDS-Net effectively reduces errors resulting from the propagation of corrupted data, leading to more accurate QoS predictions. Experimental evaluations on two real-world QoS datasets demonstrate that the proposed PDS-Net outperforms state-of-the-art baselines, validating the effectiveness of our approach.

Anomaly detection (AD) in surface inspection is an essential yet challenging task in manufacturing due to the quantity imbalance problem of scarce abnormal data. To overcome the above, a reconstruction encoder-decoder (ED) such as autoencoder or U-Net which is trained with only anomaly-free samples is widely adopted, in the hope that unseen abnormals should yield a larger reconstruction error than normal. Over the past years, researches on self-supervised reconstruction-by-inpainting have been reported. They mask out suspected defective regions for inpainting in order to make them invisible to the reconstruction ED to deliberately cause inaccurate reconstruction for abnormals. However, their limitation is multiple random masking to cover the whole input image due to defective regions not being known in advance. We propose a novel reconstruction-by-inpainting method dubbed Excision and Recovery (EAR) that features single deterministic masking. For this, we exploit a pre-trained spatial attention model to predict potential suspected defective regions that should be masked out. We also employ a variant of U-Net as our ED to further limit the reconstruction ability of the U-Net model for abnormals, in which skip connections of different layers can be selectively disabled. In the training phase, all the skip connections are switched on to fully take the benefits from the U-Net architecture. In contrast, for inferencing, we only keep deeper skip connections with shallower connections off. We validate the effectiveness of EAR using an MNIST pre-trained attention for a commonly used surface AD dataset, KolektorSDD2. The experimental results show that EAR achieves both better AD performance and higher throughput than state-of-the-art methods. We expect that the proposed EAR model can be widely adopted as training and inference strategies for AD purposes.

Large-scale transformer-based models like the Bidirectional Encoder Representations from Transformers (BERT) are widely used for Natural Language Processing (NLP) applications, wherein these models are initially pre-trained with a large corpus with millions of parameters and then fine-tuned for a downstream NLP task. One of the major limitations of these large-scale models is that they cannot be deployed on resource-constrained devices due to their large model size and increased inference latency. In order to overcome these limitations, such large-scale models can be converted to an optimized FlatBuffer format, tailored for deployment on resource-constrained edge devices. Herein, we evaluate the performance of such FlatBuffer transformed MobileBERT models on three different edge devices, fine-tuned for Reputation analysis of English language tweets in the RepLab 2013 dataset. In addition, this study encompassed an evaluation of the deployed models, wherein their latency, performance, and resource efficiency were meticulously assessed. Our experiment results show that, compared to the original BERT large model, the converted and quantized MobileBERT models have 160$\times$ smaller footprints for a 4.1% drop in accuracy while analyzing at least one tweet per second on edge devices. Furthermore, our study highlights the privacy-preserving aspect of TinyML systems as all data is processed locally within a serverless environment.

Ontology matching (OM) entails the identification of semantic relationships between concepts within two or more knowledge graphs (KGs) and serves as a critical step in integrating KGs from various sources. Recent advancements in deep OM models have harnessed the power of transformer-based language models and the advantages of knowledge graph embedding. Nevertheless, these OM models still face persistent challenges, such as a lack of reference alignments, runtime latency, and unexplored different graph structures within an end-to-end framework. In this study, we introduce a novel self-supervised learning OM framework with input ontologies, called LaKERMap. This framework capitalizes on the contextual and structural information of concepts by integrating implicit knowledge into transformers. Specifically, we aim to capture multiple structural contexts, encompassing both local and global interactions, by employing distinct training objectives. To assess our methods, we utilize the Bio-ML datasets and tasks. The findings from our innovative approach reveal that LaKERMap surpasses state-of-the-art systems in terms of alignment quality and inference time. Our models and codes are available here: //github.com/ellenzhuwang/lakermap.

Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models. Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering. However, clustering errors are inevitable. To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID. Specifically, before clustering, the relation between unlabeled images is explored based on a graph correlation learning (GCL) module and the refined features are then used for clustering to generate high-quality pseudo-labels.Thus, GCL adaptively mines the relationship between samples in a mini-batch to reduce the impact of abnormal clustering when training. To train the network more effectively, we further propose a selective contrastive learning (SCL) method with a selective memory bank update policy. Extensive experiments demonstrate that our method shows much better results than most state-of-the-art unsupervised methods on Market1501, DukeMTMC-reID and MSMT17 datasets. We will release the code for model reproduction.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司