亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep neural networks are vulnerable to adversarial examples crafted by applying human-imperceptible perturbations on clean inputs. Although many attack methods can achieve high success rates in the white-box setting, they also exhibit weak transferability in the black-box setting. Recently, various methods have been proposed to improve adversarial transferability, in which the input transformation is one of the most effective methods. In this work, we notice that existing input transformation-based works mainly adopt the transformed data in the same domain for augmentation. Inspired by domain generalization, we aim to further improve the transferability using the data augmented from different domains. Specifically, a style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans. Hence, we propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains. To avoid inconsistent semantic information of stylized images for the classification network, we fine-tune the style transfer network and mix up the generated images added by random noise with the original images to maintain semantic consistency and boost input diversity. Extensive experimental results on the ImageNet-compatible dataset show that our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models than state-of-the-art input transformation-based attacks. Code is available at: //github.com/Zhijin-Ge/STM.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The human brain can self-organize rich and diverse sparse neural pathways to incrementally master hundreds of cognitive tasks. However, most existing continual learning algorithms for deep artificial and spiking neural networks are unable to adequately auto-regulate the limited resources in the network, which leads to performance drop along with energy consumption rise as the increase of tasks. In this paper, we propose a brain-inspired continual learning algorithm with adaptive reorganization of neural pathways, which employs Self-Organizing Regulation networks to reorganize the single and limited Spiking Neural Network (SOR-SNN) into rich sparse neural pathways to efficiently cope with incremental tasks. The proposed model demonstrates consistent superiority in performance, energy consumption, and memory capacity on diverse continual learning tasks ranging from child-like simple to complex tasks, as well as on generalized CIFAR100 and ImageNet datasets. In particular, the SOR-SNN model excels at learning more complex tasks as well as more tasks, and is able to integrate the past learned knowledge with the information from the current task, showing the backward transfer ability to facilitate the old tasks. Meanwhile, the proposed model exhibits self-repairing ability to irreversible damage and for pruned networks, could automatically allocate new pathway from the retained network to recover memory for forgotten knowledge.

When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and fine-tuning strategies on natural scene datasets, which do not exploit the feature interaction across other complex domains. In this work, we explore and investigate the problem of domain-agnostic scene text spotting, i.e., training a model on multi-domain source data such that it can directly generalize to target domains rather than being specialized for a specific domain or scenario. In this regard, we present the community a text spotting validation benchmark called Under-Water Text (UWT) for noisy underwater scenes to establish an important case study. Moreover, we also design an efficient super-resolution based end-to-end transformer baseline called DA-TextSpotter which achieves comparable or superior performance over existing text spotting architectures for both regular and arbitrary-shaped scene text spotting benchmarks in terms of both accuracy and model efficiency. The dataset, code and pre-trained models will be released upon acceptance.

Numerical models of electromyographic (EMG) signals have provided a huge contribution to our fundamental understanding of human neurophysiology and remain a central pillar of motor neuroscience and the development of human-machine interfaces. However, whilst modern biophysical simulations based on finite element methods are highly accurate, they are extremely computationally expensive and thus are generally limited to modelling static systems such as isometrically contracting limbs. As a solution to this problem, we propose a transfer learning approach, in which a conditional generative model is trained to mimic the output of an advanced numerical model. To this end, we present BioMime, a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms under a wide variety of volume conductor parameters. We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy. Consequently, the computational load is dramatically reduced, which allows the rapid simulation of EMG signals during truly dynamic and naturalistic movements.

The potential of deep neural networks in skin lesion classification has already been demonstrated to be on-par if not superior to the dermatologists diagnosis. However, the performance of these models usually deteriorates when the test data differs significantly from the training data (i.e. domain shift). This concerning limitation for models intended to be used in real-world skin lesion classification tasks poses a risk to patients. For example, different image acquisition systems or previously unseen anatomical sites on the patient can suffice to cause such domain shifts. Mitigating the negative effect of such shifts is therefore crucial, but developing effective methods to address domain shift has proven to be challenging. In this study, we carry out an in-depth analysis of eight different unsupervised domain adaptation methods to analyze their effectiveness in improving generalization for dermoscopic datasets. To ensure robustness of our findings, we test each method on a total of ten distinct datasets, thereby covering a variety of possible domain shifts. In addition, we investigated which factors in the domain shifted datasets have an impact on the effectiveness of domain adaptation methods. Our findings show that all of the eight domain adaptation methods result in improved AUPRC for the majority of analyzed datasets. Altogether, these results indicate that unsupervised domain adaptations generally lead to performance improvements for the binary melanoma-nevus classification task regardless of the nature of the domain shift. However, small or heavily imbalanced datasets lead to a reduced conformity of the results due to the influence of these factors on the methods performance.

When artificial neural networks have demonstrated exceptional practical success in a variety of domains, investigations into their theoretical characteristics, such as their approximation power, statistical properties, and generalization performance, have concurrently made significant strides. In this paper, we construct a novel theory for understanding the effectiveness of neural networks, which offers a perspective distinct from prior research. Specifically, we explore the rationale underlying a common practice during the construction of neural network models: sample splitting. Our findings indicate that the optimal hyperparameters derived from sample splitting can enable a neural network model that asymptotically minimizes the prediction risk. We conduct extensive experiments across different application scenarios and network architectures, and the results manifest our theory's effectiveness.

It is well known that canonical recurrent neural networks (RNNs) face limitations in learning long-term dependencies which have been addressed by memory structures in long short-term memory (LSTM) networks. Neural Turing machines (NTMs) are novel RNNs that implement the notion of programmable computers with neural network controllers that can learn simple algorithmic tasks. Matrix neural networks feature matrix representation which inherently preserves the spatial structure of data when compared to canonical neural networks that use vector-based representation. One may then argue that neural networks with matrix representations may have the potential to provide better memory capacity. In this paper, we define and study a probabilistic notion of memory capacity based on Fisher information for matrix-based RNNs. We find bounds on memory capacity for such networks under various hypotheses and compare them with their vector counterparts. In particular, we show that the memory capacity of such networks is bounded by $N^2$ for $N\times N$ state matrix which generalizes the one known for vector networks. We also show and analyze the increase in memory capacity for such networks which is introduced when one exhibits an external state memory, such as NTMs. Consequently, we construct NTMs with RNN controllers with matrix-based representation of external memory, leading us to introduce Matrix NTMs. We demonstrate the performance of this class of memory networks under certain algorithmic learning tasks such as copying and recall and compare it with Matrix RNNs. We find an improvement in the performance of Matrix NTMs by the addition of external memory, in comparison to Matrix RNNs.

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司