亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

MOBIO is a bi-modal database that was captured almost exclusively on mobile phones. It aims to improve research into deploying biometric techniques to mobile devices. Research has been shown that face and speaker recognition can be performed in a mobile environment. Facial landmark localization aims at finding the coordinates of a set of pre-defined key points for 2D face images. A facial landmark usually has specific semantic meaning, e.g. nose tip or eye centre, which provides rich geometric information for other face analysis tasks such as face recognition, emotion estimation and 3D face reconstruction. Pretty much facial landmark detection methods adopt still face databases, such as 300W, AFW, AFLW, or COFW, for evaluation, but seldomly use mobile data. Our work is first to perform facial landmark detection evaluation on the mobile still data, i.e., face images from MOBIO database. About 20,600 face images have been extracted from this audio-visual database and manually labeled with 22 landmarks as the groundtruth. Several state-of-the-art facial landmark detection methods are adopted to evaluate their performance on these data. The result shows that the data from MOBIO database is pretty challenging. This database can be a new challenging one for facial landmark detection evaluation.

相關內容

Rigid robots can be precise in repetitive tasks, but struggle in unstructured environments. Nature's versatility in such environments inspires researchers to develop biomimetic robots that incorporate compliant and contracting artificial muscles. Among the recently proposed artificial muscle technologies, electrohydraulic actuators are promising since they offer performance comparable to that of mammalian muscles in terms of speed and power density. However, they require high driving voltages and have safety concerns due to exposed electrodes. These high voltages lead to either bulky or inefficient driving electronics that make untethered, high-degree-of-freedom bio-inspired robots difficult to realize. Here, we present hydraulically amplified low voltage electrostatic (HALVE) actuators that match mammalian skeletal muscles in average power density (50.5 W kg-1) and peak strain rate (971 % s-1) at a driving voltage of just 1100 V. This driving voltage is approx. 5-7 times lower compared to other electrohydraulic actuators using paraelectric dielectrics. Furthermore, HALVE actuators are safe to touch, waterproof, and self-clearing, which makes them easy to implement in wearables and robotics. We characterize, model, and physically validate key performance metrics of the actuator and compare its performance to state-of-the-art electrohydraulic designs. Finally, we demonstrate the utility of our actuators on two muscle-based electrohydraulic robots: an untethered soft robotic swimmer and a robotic gripper. We foresee that HALVE actuators can become a key building block for future highly-biomimetic untethered robots and wearables with many independent artificial muscles such as biomimetic hands, faces, or exoskeletons.

While it is generally acknowledged that force feedback is beneficial to robotic control, applications of policy learning to robotic manipulation typically only leverage visual feedback. Recently, symmetric neural models have been used to significantly improve the sample efficiency and performance of policy learning across a variety of robotic manipulation domains. This paper explores an application of symmetric policy learning to visual-force problems. We present Symmetric Visual Force Learning (SVFL), a novel method for robotic control which leverages visual and force feedback. We demonstrate that SVFL can significantly outperform state of the art baselines for visual force learning and report several interesting empirical findings related to the utility of learning force feedback control policies in both general manipulation tasks and scenarios with low visual acuity.

Denoising diffusion models are a novel class of generative models that have recently become extremely popular in machine learning. In this paper, we describe how such ideas can also be used to sample from posterior distributions and, more generally, any target distribution whose density is known up to a normalizing constant. The key idea is to consider a forward ``noising'' diffusion initialized at the target distribution which ``transports'' this latter to a normal distribution for long diffusion times. The time-reversal of this process, the ``denoising'' diffusion, thus ``transports'' the normal distribution to the target distribution and can be approximated so as to sample from the target. To accelerate simulation, we show how one can introduce and approximate a Schr\"{o}dinger bridge between these two distributions, i.e. a diffusion which transports the normal to the target in finite time.

Cellular traffic prediction is of great importance on the path of enabling 5G mobile networks to perform intelligent and efficient infrastructure planning and management. However, available data are limited to base station logging information. Hence, training methods for generating high-quality predictions that can generalize to new observations across diverse parties are in demand. Traditional approaches require collecting measurements from multiple base stations, transmitting them to a central entity and conducting machine learning operations using the acquire data. The dissemination of local observations raises concerns regarding confidentiality and performance, which impede the applicability of machine learning techniques. Although various distributed learning methods have been proposed to address this issue, their application to traffic prediction remains highly unexplored. In this work, we investigate the efficacy of federated learning applied to raw base station LTE data for time-series forecasting. We evaluate one-step predictions using five different neural network architectures trained with a federated setting on non-identically distributed data. Our results show that the learning architectures adapted to the federated setting yield equivalent prediction error to the centralized setting. In addition, preprocessing techniques on base stations enhance forecasting accuracy, while advanced federated aggregators do not surpass simpler approaches. Simulations considering the environmental impact suggest that federated learning holds the potential for reducing carbon emissions and energy consumption. Finally, we consider a large-scale scenario with synthetic data and demonstrate that federated learning reduces the computational and communication costs compared to centralized settings.

Learning generalizable representation and classifier for class-imbalanced data is challenging for data-driven deep models. Most studies attempt to re-balance the data distribution, which is prone to overfitting on tail classes and underfitting on head classes. In this work, we propose Dual Compensation Residual Networks to better fit both tail and head classes. Firstly, we propose dual Feature Compensation Module (FCM) and Logit Compensation Module (LCM) to alleviate the overfitting issue. The design of these two modules is based on the observation: an important factor causing overfitting is that there is severe feature drift between training and test data on tail classes. In details, the test features of a tail category tend to drift towards feature cloud of multiple similar head categories. So FCM estimates a multi-mode feature drift direction for each tail category and compensate for it. Furthermore, LCM translates the deterministic feature drift vector estimated by FCM along intra-class variations, so as to cover a larger effective compensation space, thereby better fitting the test features. Secondly, we propose a Residual Balanced Multi-Proxies Classifier (RBMC) to alleviate the under-fitting issue. Motivated by the observation that re-balancing strategy hinders the classifier from learning sufficient head knowledge and eventually causes underfitting, RBMC utilizes uniform learning with a residual path to facilitate classifier learning. Comprehensive experiments on Long-tailed and Class-Incremental benchmarks validate the efficacy of our method.

Increasing amounts of structured data can provide value for research and business if the relevant data can be located. Often the data is in a data lake without a consistent schema, making locating useful data challenging. Table search is a growing research area, but existing benchmarks have been limited to displayed tables. Tables sized and formatted for display in a Wikipedia page or ArXiv paper are considerably different from data tables in both scale and style. By using metadata associated with open data from government portals, we create the first dataset to benchmark search over data tables at scale. We demonstrate three styles of table-to-table related table search. The three notions of table relatedness are: tables produced by the same organization, tables distributed as part of the same dataset, and tables with a high degree of overlap in the annotated tags. The keyword tags provided with the metadata also permit the automatic creation of a keyword search over tables benchmark. We provide baselines on this dataset using existing methods including traditional and neural approaches.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains. In some domains, like bioinformatics and robotics, it is very difficult to construct a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation, which limits its development. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i.d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data. This survey focuses on reviewing the current researches of transfer learning by using deep neural network and its applications. We defined deep transfer learning, category and review the recent research works based on the techniques used in deep transfer learning.

北京阿比特科技有限公司