亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an end-to-end procedure for embodied exploration inspired by two biological computations: predictive coding and uncertainty minimization. The procedure can be applied to exploration settings in a task-independent and intrinsically driven manner. We first demonstrate our approach in a maze navigation task and show that it can discover the underlying transition distributions and spatial features of the environment. Second, we apply our model to a more complex active vision task, where an agent actively samples its visual environment to gather information. We show that our model builds unsupervised representations through exploration that allow it to efficiently categorize visual scenes. We further show that using these representations for downstream classification leads to superior data efficiency and learning speed compared to other baselines while maintaining lower parameter complexity. Finally, the modularity of our model allows us to probe its internal mechanisms and analyze the interaction between perception and action during exploration.

相關內容

An online non-convex optimization problem is considered where the goal is to minimize the flow time (total delay) of a set of jobs by modulating the number of active servers, but with a switching cost associated with changing the number of active servers over time. Each job can be processed by at most one fixed speed server at any time. Compared to the usual online convex optimization (OCO) problem with switching cost, the objective function considered is non-convex and more importantly, at each time, it depends on all past decisions and not just the present one. Both worst-case and stochastic inputs are considered; for both cases, competitive algorithms are derived.

This paper introduces Spatial Diagrammatic Instructions (SDIs), an approach for human operators to specify objectives and constraints that are related to spatial regions in the working environment. Human operators are enabled to sketch out regions directly on camera images that correspond to the objectives and constraints. These sketches are projected to 3D spatial coordinates, and continuous Spatial Instruction Maps (SIMs) are learned upon them. These maps can then be integrated into optimization problems for tasks of robots. In particular, we demonstrate how Spatial Diagrammatic Instructions can be applied to solve the Base Placement Problem of mobile manipulators, which concerns the best place to put the manipulator to facilitate a certain task. Human operators can specify, via sketch, spatial regions of interest for a manipulation task and permissible regions for the mobile manipulator to be at. Then, an optimization problem that maximizes the manipulator's reachability, or coverage, over the designated regions of interest while remaining in the permissible regions is solved. We provide extensive empirical evaluations, and show that our formulation of Spatial Instruction Maps provides accurate representations of user-specified diagrammatic instructions. Furthermore, we demonstrate that our diagrammatic approach to the Mobile Base Placement Problem enables higher quality solutions and faster run-time.

The current thesis aims to explore the reinforcement learning field and build on existing methods to produce improved ones to tackle the problem of learning in high-dimensional and complex environments. It addresses such goals by decomposing learning tasks in a hierarchical fashion known as Hierarchical Reinforcement Learning. We start in the first chapter by getting familiar with the Markov Decision Process framework and presenting some of its recent techniques that the following chapters use. We then proceed to build our Hierarchical Policy learning as an answer to the limitations of a single primitive policy. The hierarchy is composed of a manager agent at the top and employee agents at the lower level. In the last chapter, which is the core of this thesis, we attempt to learn lower-level elements of the hierarchy independently of the manager level in what is known as the "Eigenoption". Based on the graph structure of the environment, Eigenoptions allow us to build agents that are aware of the geometric and dynamic properties of the environment. Their decision-making has a special property: it is invariant to symmetric transformations of the environment, allowing as a consequence to greatly reduce the complexity of the learning task.

We propose a novel quaternionic time-series compression methodology where we divide a long time-series into segments of data, extract the min, max, mean and standard deviation of these chunks as representative features and encapsulate them in a quaternion, yielding a quaternion valued time-series. This time-series is processed using quaternion valued neural network layers, where we aim to preserve the relation between these features through the usage of the Hamilton product. To train this quaternion neural network, we derive quaternion backpropagation employing the GHR calculus, which is required for a valid product and chain rule in quaternion space. Furthermore, we investigate the connection between the derived update rules and automatic differentiation. We apply our proposed compression method on the Tennessee Eastman Dataset, where we perform fault classification using the compressed data in two settings: a fully supervised one and in a semi supervised, contrastive learning setting. Both times, we were able to outperform real valued counterparts as well as two baseline models: one with the uncompressed time-series as the input and the other with a regular downsampling using the mean. Further, we could improve the classification benchmark set by SimCLR-TS from 81.43% to 83.90%.

Two algorithms for computing the rational univariate representation of zero-dimensional ideals with parameters are presented in the paper. Different from the rational univariate representation of zero-dimensional ideals without parameters, the number of zeros of zero-dimensional ideals with parameters under various specializations is different, which leads to choosing and checking the separating element, the key to computing the rational univariate representation, is difficult. In order to pick out the separating element, by partitioning the parameter space we can ensure that under each branch the ideal has the same number of zeros. Subsequently with the help of the extended subresultant theorem for parametric cases, two ideas are given to conduct the further partition of parameter space for choosing and checking the separating element. Based on these, we give two algorithms for computing rational univariate representations of zero-dimensional ideals with parameters. Furthermore, the two algorithms have been implemented on the computer algebra system Singular. Experimental data show that the second algorithm has the better performance in contrast to the first one.

We explore a spectral initialization method that plays a central role in contemporary research on signal estimation in nonconvex scenarios. In a noiseless phase retrieval framework, we precisely analyze the method's performance in the high-dimensional limit when sensing vectors follow a multivariate Gaussian distribution for two rotationally invariant models of the covariance matrix C. In the first model C is a projector on a lower dimensional space while in the second it is a Wishart matrix. Our analytical results extend the well-established case when C is the identity matrix. Our examination shows that the introduction of biased spatial directions leads to a substantial improvement in the spectral method's effectiveness, particularly when the number of measurements is less than the signal's dimension. This extension also consistently reveals a phase transition phenomenon dependent on the ratio between sample size and signal dimension. Surprisingly, both of these models share the same threshold value.

This paper presents an innovative end-to-end workflow for mineral exploration, integrating ambient noise tomography (ANT) and artificial intelligence (AI) to enhance the discovery and delineation of mineral resources essential for the global transition to a low carbon economy. We focus on copper as a critical element, required in significant quantities for renewable energy solutions. We show the benefits of utilising ANT, characterised by its speed, scalability, depth penetration, resolution, and low environmental impact, alongside artificial intelligence (AI) techniques to refine a continent-scale prospectivity model at the deposit scale by fine-tuning our model on local high-resolution data. We show the promise of the method by first presenting a new data-driven AI prospectivity model for copper within Australia, which serves as our foundation model for further fine-tuning. We then focus on the Hillside IOCG deposit on the prospective Yorke Peninsula. We show that with relatively few local training samples (orebody intercepts), we can fine tune the foundation model to provide a good estimate of the Hillside orebody outline. Our methodology demonstrates how AI can augment geophysical data interpretation, providing a novel approach to mineral exploration with improved decision-making capabilities for targeting mineralization, thereby addressing the urgent need for increased mineral resource discovery.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司