亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The goal of spoken language understanding (SLU) systems is to determine the meaning of the input speech signal, unlike speech recognition which aims to produce verbatim transcripts. Advances in end-to-end (E2E) speech modeling have made it possible to train solely on semantic entities, which are far cheaper to collect than verbatim transcripts. We focus on this set prediction problem, where entity order is unspecified. Using two classes of E2E models, RNN transducers and attention based encoder-decoders, we show that these models work best when the training entity sequence is arranged in spoken order. To improve E2E SLU models when entity spoken order is unknown, we propose a novel data augmentation technique along with an implicit attention based alignment method to infer the spoken order. F1 scores significantly increased by more than 11% for RNN-T and about 2% for attention based encoder-decoder SLU models, outperforming previously reported results.

相關內容

Recent progress in deep learning has continuously improved the accuracy of dialogue response selection. In particular, sophisticated neural network architectures are leveraged to capture the rich interactions between dialogue context and response candidates. While remarkably effective, these models also bring in a steep increase in computational cost. Consequently, such models can only be used as a re-rank module in practice. In this study, we present a solution to directly select proper responses from a large corpus or even a nonparallel corpus that only consists of unpaired sentences, using a dense retrieval model. To push the limits of dense retrieval, we design an interaction layer upon the dense retrieval models and apply a set of tailor-designed learning strategies. Our model shows superiority over strong baselines on the conventional re-rank evaluation setting, which is remarkable given its efficiency. To verify the effectiveness of our approach in realistic scenarios, we also conduct full-rank evaluation, where the target is to select proper responses from a full candidate pool that may contain millions of candidates and evaluate them fairly through human annotations. Our proposed model notably outperforms pipeline baselines that integrate fast recall and expressive re-rank modules. Human evaluation results show that enlarging the candidate pool with nonparallel corpora improves response quality further.

Although Transformers have gained success in several speech processing tasks like spoken language understanding (SLU) and speech translation (ST), achieving online processing while keeping competitive performance is still essential for real-world interaction. In this paper, we take the first step on streaming SLU and simultaneous ST using a blockwise streaming Transformer, which is based on contextual block processing and blockwise synchronous beam search. Furthermore, we design an automatic speech recognition (ASR)-based intermediate loss regularization for the streaming SLU task to improve the classification performance further. As for the simultaneous ST task, we propose a cross-lingual encoding method, which employs a CTC branch optimized with target language translations. In addition, the CTC translation output is also used to refine the search space with CTC prefix score, achieving joint CTC/attention simultaneous translation for the first time. Experiments for SLU are conducted on FSC and SLURP corpora, while the ST task is evaluated on Fisher-CallHome Spanish and MuST-C En-De corpora. Experimental results show that the blockwise streaming Transformer achieves competitive results compared to offline models, especially with our proposed methods that further yield a 2.4% accuracy gain on the SLU task and a 4.3 BLEU gain on the ST task over streaming baselines.

Training a model with access to human explanations can improve data efficiency and model performance on in- and out-of-domain data. Adding to these empirical findings, similarity with the process of human learning makes learning from explanations a promising way to establish a fruitful human-machine interaction. Several methods have been proposed for improving natural language processing (NLP) models with human explanations, that rely on different explanation types and mechanism for integrating these explanations into the learning process. These methods are rarely compared with each other, making it hard for practitioners to choose the best combination of explanation type and integration mechanism for a specific use-case. In this paper, we give an overview of different methods for learning from human explanations, and discuss different factors that can inform the decision of which method to choose for a specific use-case.

The two most popular loss functions for streaming end-to-end automatic speech recognition (ASR) are the RNN-Transducer (RNN-T) and the connectionist temporal classification (CTC) objectives. Both perform an alignment-free training by marginalizing over all possible alignments, but use different transition rules. Between these two loss types we can classify the monotonic RNN-T (MonoRNN-T) and the recently proposed CTC-like Transducer (CTC-T), which both can be realized using the graph temporal classification-transducer (GTC-T) loss function. Monotonic transducers have a few advantages. First, RNN-T can suffer from runaway hallucination, where a model keeps emitting non-blank symbols without advancing in time, often in an infinite loop. Secondly, monotonic transducers consume exactly one model score per time step and are therefore more compatible and unifiable with traditional FST-based hybrid ASR decoders. However, the MonoRNN-T so far has been found to have worse accuracy than RNN-T. It does not have to be that way, though: By regularizing the training - via joint LAS training or parameter initialization from RNN-T - both MonoRNN-T and CTC-T perform as well - or better - than RNN-T. This is demonstrated for LibriSpeech and for a large-scale in-house data set.

Prevailing deep models are single-purpose and overspecialize at individual tasks. However, when being extended to new tasks, they typically forget previously learned skills and learn from scratch. We address this issue by introducing SkillNet, a general-purpose model that stitches together existing skills to learn new tasks more effectively. The key feature of our approach is that it is sparsely activated guided by predefined skills. Different from traditional dense models that always activate all the model parameters, SkillNet only activates parts of the model parameters whose skills are relevant to the target task. When learning for a new task, our approach precisely activates required skills and also provides an option to add new skills. We evaluate on natural language understandings tasks and have the following findings. First, with only one model checkpoint, SkillNet performs better than task-specific fine-tuning and two multi-task learning baselines (i.e., dense model and Mixture-of-Experts model) on six tasks. Second, sparsely activated pre-training further improves the overall performance. Third, SkillNet significantly outperforms baseline systems when being extended to new tasks.

Language models (LMs) significantly improve the recognition accuracy of end-to-end (E2E) models on words rarely seen during training, when used in either the shallow fusion or the rescoring setups. In this work, we introduce LMs in the learning of hybrid autoregressive transducer (HAT) models in the discriminative training framework, to mitigate the training versus inference gap regarding the use of LMs. For the shallow fusion setup, we use LMs during both hypotheses generation and loss computation, and the LM-aware MWER-trained model achieves 10\% relative improvement over the model trained with standard MWER on voice search test sets containing rare words. For the rescoring setup, we learn a small neural module to generate per-token fusion weights in a data-dependent manner. This model achieves the same rescoring WER as regular MWER-trained model, but without the need for sweeping fusion weights.

Existing Chinese text error detection mainly focuses on spelling and simple grammatical errors. These errors have been studied extensively and are relatively simple for humans. On the contrary, Chinese semantic errors are understudied and more complex that humans cannot easily recognize. The task of this paper is Chinese Semantic Error Recognition (CSER), a binary classification task to determine whether a sentence contains semantic errors. The current research has no effective method to solve this task. In this paper, we inherit the model structure of BERT and design several syntax-related pre-training tasks so that the model can learn syntactic knowledge. Our pre-training tasks consider both the directionality of the dependency structure and the diversity of the dependency relationship. Due to the lack of a published dataset for CSER, we build a high-quality dataset for CSER for the first time named Corpus of Chinese Linguistic Semantic Acceptability (CoCLSA). The experimental results on the CoCLSA show that our methods outperform universal pre-trained models and syntax-infused models.

Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.

北京阿比特科技有限公司