亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high dimensional vectors under sparsity restrictions. In this regard, our main contribution is the development of a loss function, based on which, one can operationalize a one-step bias-correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Estimating the difference between two binomial proportions will be investigated, where Bayesian, frequentist and fiducial (BFF) methods will be considered. Three vague priors will be used, the Jeffreys prior, a divergence prior and the probability matching prior. A probability matching prior is a prior distribution under which the posterior probabilities of certain regions coincide with their coverage probabilities. Fiducial inference can be viewed as a procedure that obtains a measure on a parameter space while assuming less than what Bayesian inference does, i.e. no prior. Fisher introduced the idea of fiducial probability and fiducial inference. In some cases the fiducial distribution is equivalent to the Jeffreys posterior. The performance of the Jeffreys prior, divergence prior and the probability matching prior will be compared to a fiducial method and other classical methods of constructing confidence intervals for the difference between two independent binomial parameters. These intervals will be compared and evaluated by looking at their coverage rates and average interval lengths. The probability matching and divergence priors perform better than the Jeffreys prior.

This paper proposes an experimental design for estimation and inference on welfare-maximizing policies in the presence of spillover effects. I consider a setting where units are organized into a finite number of large clusters and interact in unobserved ways within each cluster. As a first contribution, I introduce a single-wave experiment to estimate the marginal effect of a change in the treatment probabilities taking spillovers into account and test for policy optimality. The design randomizes treatments independently within clusters and induces local perturbations to treatment probabilities within pairs of clusters. Using the estimated marginal effect, I construct a practical test for whether a given treatment allocation rule maximizes welfare, and I characterize its asymptotic properties. The idea is that researchers should report estimates of the marginal effect and test for welfare-maximizing policies: the marginal effect indicates the direction for a welfare improvement, and the test provides evidence on whether it is worth conducting additional experiments to estimate a welfare-improving treatment allocation. As a second contribution, I design a multiple-wave experiment to estimate treatment assignment rules and maximize welfare. I derive small-sample guarantees on the difference between the maximum attainable welfare and the welfare evaluated at the estimated policy (regret). A corollary of such guarantees is that the regret converges to zero linearly in the number of iterations and clusters. Simulations calibrated to existing experiments on information diffusion and cash-transfer programs show that the method leads to significant welfare improvements.

The asymptotic behaviour of Linear Spectral Statistics (LSS) of the smoothed periodogram estimator of the spectral coherency matrix of a complex Gaussian high-dimensional time series $(\y_n)_{n \in \mathbb{Z}}$ with independent components is studied under the asymptotic regime where the sample size $N$ converges towards $+\infty$ while the dimension $M$ of $\y$ and the smoothing span of the estimator grow to infinity at the same rate in such a way that $\frac{M}{N} \rightarrow 0$. It is established that, at each frequency, the estimated spectral coherency matrix is close from the sample covariance matrix of an independent identically $\mathcal{N}_{\mathbb{C}}(0,\I_M)$ distributed sequence, and that its empirical eigenvalue distribution converges towards the Marcenko-Pastur distribution. This allows to conclude that each LSS has a deterministic behaviour that can be evaluated explicitly. Using concentration inequalities, it is shown that the order of magnitude of the supremum over the frequencies of the deviation of each LSS from its deterministic approximation is of the order of $\frac{1}{M} + \frac{\sqrt{M}}{N}+ (\frac{M}{N})^{3}$ where $N$ is the sample size. Numerical simulations supports our results.

We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain formulation of the problem based on frequency-domain sufficient statistic for the observed time series is presented. We investigate an alternating direction method of multipliers (ADMM) approach for optimization of the sparse-group lasso penalized log-likelihood. We provide sufficient conditions for convergence in the Frobenius norm of the inverse PSD estimators to the true value, jointly across all frequencies, where the number of frequencies are allowed to increase with sample size. This results also yields a rate of convergence. We also empirically investigate selection of the tuning parameters based on Bayesian information criterion, and illustrate our approach using numerical examples utilizing both synthetic and real data.

In many practices, scientists are particularly interested in detecting which of the predictors are truly associated with a multivariate response. It is more accurate to model multiple responses as one vector rather than separating each component one by one. This is particularly true for complex traits having multiple correlated components. A Bayesian multivariate variable selection (BMVS) approach is proposed to select important predictors influencing the multivariate response from a candidate pool with an ultrahigh dimension. By applying the sample-size-dependent spike and slab priors, the BMVS approach satisfies the strong selection consistency property under certain conditions, which represents the advantages of BMVS over other existing Bayesian multivariate regression-based approaches. The proposed approach considers the covariance structure of multiple responses without assuming independence and integrates the estimation of covariance-related parameters together with all regression parameters into one framework through a fast updating MCMC procedure. It is demonstrated through simulations that the BMVS approach outperforms some other relevant frequentist and Bayesian approaches. The proposed BMVS approach possesses the flexibility of wide applications, including genome-wide association studies with multiple correlated phenotypes and a large scale of genetic variants and/or environmental variables, as demonstrated in the real data analyses section. The computer code and test data of the proposed method are available as an R package.

In this paper, we study statistical inference for the Wasserstein distance, which has attracted much attention and has been applied to various machine learning tasks. Several studies have been proposed in the literature, but almost all of them are based on asymptotic approximation and do not have finite-sample validity. In this study, we propose an exact (non-asymptotic) inference method for the Wasserstein distance inspired by the concept of conditional Selective Inference (SI). To our knowledge, this is the first method that can provide a valid confidence interval (CI) for the Wasserstein distance with finite-sample coverage guarantee, which can be applied not only to one-dimensional problems but also to multi-dimensional problems. We evaluate the performance of the proposed method on both synthetic and real-world datasets.

Statistical machine learning models trained with stochastic gradient algorithms are increasingly being deployed in critical scientific applications. However, computing the stochastic gradient in several such applications is highly expensive or even impossible at times. In such cases, derivative-free or zeroth-order algorithms are used. An important question which has thus far not been addressed sufficiently in the statistical machine learning literature is that of equipping stochastic zeroth-order algorithms with practical yet rigorous inferential capabilities so that we not only have point estimates or predictions but also quantify the associated uncertainty via confidence intervals or sets. Towards this, in this work, we first establish a central limit theorem for Polyak-Ruppert averaged stochastic zeroth-order gradient algorithm. We then provide online estimators of the asymptotic covariance matrix appearing in the central limit theorem, thereby providing a practical procedure for constructing asymptotically valid confidence sets (or intervals) for parameter estimation (or prediction) in the zeroth-order setting.

Curriculum learning (CL) is a commonly used machine learning training strategy. However, we still lack a clear theoretical understanding of CL's benefits. In this paper, we study the benefits of CL in the multitask linear regression problem under both structured and unstructured settings. For both settings, we derive the minimax rates for CL with the oracle that provides the optimal curriculum and without the oracle, where the agent has to adaptively learn a good curriculum. Our results reveal that adaptive learning can be fundamentally harder than the oracle learning in the unstructured setting, but it merely introduces a small extra term in the structured setting. To connect theory with practice, we provide justification for a popular empirical method that selects tasks with highest local prediction gain by comparing its guarantees with the minimax rates mentioned above.

We introduce a universal framework for characterizing the statistical efficiency of a statistical estimation problem with differential privacy guarantees. Our framework, which we call High-dimensional Propose-Test-Release (HPTR), builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism. Gluing all these together is the concept of resilience, which is central to robust statistical estimation. Resilience guides the design of the algorithm, the sensitivity analysis, and the success probability analysis of the test step in Propose-Test-Release. The key insight is that if we design an exponential mechanism that accesses the data only via one-dimensional robust statistics, then the resulting local sensitivity can be dramatically reduced. Using resilience, we can provide tight local sensitivity bounds. These tight bounds readily translate into near-optimal utility guarantees in several cases. We give a general recipe for applying HPTR to a given instance of a statistical estimation problem and demonstrate it on canonical problems of mean estimation, linear regression, covariance estimation, and principal component analysis. We introduce a general utility analysis technique that proves that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.

This paper investigates the problem of online statistical inference of model parameters in stochastic optimization problems via the Kiefer-Wolfowitz algorithm with random search directions. We first present the asymptotic distribution for the Polyak-Ruppert-averaging type Kiefer-Wolfowitz (AKW) estimators, whose asymptotic covariance matrices depend on the function-value query complexity and the distribution of search directions. The distributional result reflects the trade-off between statistical efficiency and function query complexity. We further analyze the choices of random search directions to minimize the asymptotic covariance matrix, and conclude that the optimal search direction depends on the optimality criteria with respect to different summary statistics of the Fisher information matrix. Based on the asymptotic distribution result, we conduct online statistical inference by providing two construction procedures of valid confidence intervals. We provide numerical experiments verifying our theoretical results with the practical effectiveness of the procedures.

北京阿比特科技有限公司