亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning has contributed greatly to many successes in artificial intelligence in recent years. Today, it is possible to train models that have thousands of layers and hundreds of billions of parameters. Large-scale deep models have achieved great success, but the enormous computational complexity and gigantic storage requirements make it extremely difficult to implement them in real-time applications. On the other hand, the size of the dataset is still a real problem in many domains. Data are often missing, too expensive, or impossible to obtain for other reasons. Ensemble learning is partially a solution to the problem of small datasets and overfitting. However, ensemble learning in its basic version is associated with a linear increase in computational complexity. We analyzed the impact of the ensemble decision-fusion mechanism and checked various methods of sharing the decisions including voting algorithms. We used the modified knowledge distillation framework as a decision-fusion mechanism which allows in addition compressing of the entire ensemble model into a weight space of a single model. We showed that knowledge distillation can aggregate knowledge from multiple teachers in only one student model and, with the same computational complexity, obtain a better-performing model compared to a model trained in the standard manner. We have developed our own method for mimicking the responses of all teachers at the same time, simultaneously. We tested these solutions on several benchmark datasets. In the end, we presented a wide application use of the efficient multi-teacher knowledge distillation framework. In the first example, we used knowledge distillation to develop models that could automate corrosion detection on aircraft fuselage. The second example describes detection of smoke on observation cameras in order to counteract wildfires in forests.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

We introduce HATELEXICON, a lexicon of slurs and targets of hate speech for the countries of Brazil, Germany, India and Kenya, to aid training and interpretability of models. We demonstrate how our lexicon can be used to interpret model predictions, showing that models developed to classify extreme speech rely heavily on target words when making predictions. Further, we propose a method to aid shot selection for training in low-resource settings via HATELEXICON. In few-shot learning, the selection of shots is of paramount importance to model performance. In our work, we simulate a few-shot setting for German and Hindi, using HASOC data for training and the Multilingual HateCheck (MHC) as a benchmark. We show that selecting shots based on our lexicon leads to models performing better on MHC than models trained on shots sampled randomly. Thus, when given only a few training examples, using our lexicon to select shots containing more sociocultural information leads to better few-shot performance.

Recent decades have seen the rise of large-scale Deep Neural Networks (DNNs) to achieve human-competitive performance in a variety of artificial intelligence tasks. Often consisting of hundreds of millions, if not hundreds of billion parameters, these DNNs are too large to be deployed to, or efficiently run on resource-constrained devices such as mobile phones or IoT microcontrollers. Systems relying on large-scale DNNs thus have to call the corresponding model over the network, leading to substantial costs for hosting and running the large-scale remote model, costs which are often charged on a per-use basis. In this paper, we propose BiSupervised, a novel architecture, where, before relying on a large remote DNN, a system attempts to make a prediction on a small-scale local model. A DNN supervisor monitors said prediction process and identifies easy inputs for which the local prediction can be trusted. For these inputs, the remote model does not have to be invoked, thus saving costs, while only marginally impacting the overall system accuracy. Our architecture furthermore foresees a second supervisor to monitor the remote predictions and identify inputs for which not even these can be trusted, allowing to raise an exception or run a fallback strategy instead. We evaluate the cost savings, and the ability to detect incorrectly predicted inputs on four diverse case studies: IMDB movie review sentiment classification, Github issue triaging, Imagenet image classification, and SQuADv2 free-text question answering

The acquisition of labels for supervised learning can be expensive. In order to improve the sample-efficiency of neural network regression, we study active learning methods that adaptively select batches of unlabeled data for labeling. We present a framework for constructing such methods out of (network-dependent) base kernels, kernel transformations and selection methods. Our framework encompasses many existing Bayesian methods based on Gaussian Process approximations of neural networks as well as non-Bayesian methods. Additionally, we propose to replace the commonly used last-layer features with sketched finite-width Neural Tangent Kernels, and to combine them with a novel clustering method. To evaluate different methods, we introduce an open-source benchmark consisting of 15 large tabular regression data sets. Our proposed method outperforms the state-of-the-art on our benchmark, scales to large data sets, and works out-of-the-box without adjusting the network architecture or training code. We provide open-source code that includes efficient implementations of all kernels, kernel transformations, and selection methods, and can be used for reproducing our results.

Symbolic regression searches for analytic expressions that accurately describe studied phenomena. The main attraction of this approach is that it returns an interpretable model that can be insightful to users. Historically, the majority of algorithms for symbolic regression have been based on evolutionary algorithms. However, there has been a recent surge of new proposals that instead utilize approaches such as enumeration algorithms, mixed linear integer programming, neural networks, and Bayesian optimization. In order to assess how well these new approaches behave on a set of common challenges often faced in real-world data, we hosted a competition at the 2022 Genetic and Evolutionary Computation Conference consisting of different synthetic and real-world datasets which were blind to entrants. For the real-world track, we assessed interpretability in a realistic way by using a domain expert to judge the trustworthiness of candidate models.We present an in-depth analysis of the results obtained in this competition, discuss current challenges of symbolic regression algorithms and highlight possible improvements for future competitions.

Zero-shot quantization is a promising approach for developing lightweight deep neural networks when data is inaccessible owing to various reasons, including cost and issues related to privacy. By exploiting the learned parameters ($\mu$ and $\sigma$) of batch normalization layers in an FP32-pre-trained model, zero-shot quantization schemes focus on generating synthetic data. Subsequently, they distill knowledge from the pre-trained model (teacher) to the quantized model (student) such that the quantized model can be optimized with the synthetic dataset. However, thus far, zero-shot quantization has primarily been discussed in the context of quantization-aware training methods, which require task-specific losses and long-term optimization as much as retraining. We thus introduce a post-training quantization scheme for zero-shot quantization that produces high-quality quantized networks within a few hours. Furthermore, we propose a framework called \genie~that generates data suited for quantization. With the data synthesized by Genie, we can produce robust quantized models without real datasets, which is comparable to few-shot quantization. We also propose a post-training quantization algorithm to enhance the performance of quantized models. By combining them, we can bridge the gap between zero-shot and few-shot quantization while significantly improving the quantization performance compared to that of existing approaches. In other words, we can obtain a unique state-of-the-art zero-shot quantization approach.

As a second-order method, the Natural Gradient Descent (NGD) has the ability to accelerate training of neural networks. However, due to the prohibitive computational and memory costs of computing and inverting the Fisher Information Matrix (FIM), efficient approximations are necessary to make NGD scalable to Deep Neural Networks (DNNs). Many such approximations have been attempted. The most sophisticated of these is KFAC, which approximates the FIM as a block-diagonal matrix, where each block corresponds to a layer of the neural network. By doing so, KFAC ignores the interactions between different layers. In this work, we investigate the interest of restoring some low-frequency interactions between the layers by means of two-level methods. Inspired from domain decomposition, several two-level corrections to KFAC using different coarse spaces are proposed and assessed. The obtained results show that incorporating the layer interactions in this fashion does not really improve the performance of KFAC. This suggests that it is safe to discard the off-diagonal blocks of the FIM, since the block-diagonal approach is sufficiently robust, accurate and economical in computation time.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司