亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Remaining Useful Life (RUL) prediction is a critical task that aims to estimate the amount of time until a system fails, where the latter is formed by three main components, that is, the application, communication network, and RUL logic. In this paper, we provide an end-to-end analysis of an entire RUL-based chain. Specifically, we consider a factory floor where Automated Guided Vehicles (AGVs) transport dangerous liquids whose fall may cause injuries to workers. Regarding the communication infrastructure, the AGVs are equipped with 5G User Equipments (UEs) that collect real-time data of their movements and send them to an application server. The RUL logic consists of a Deep Learning (DL)-based pipeline that assesses if there will be liquid falls by analyzing the collected data, and, eventually, sending commands to the AGVs to avoid such a danger. According to this scenario, we performed End-to-End 5G NR-compliant network simulations to study the Round-Trip Time (RTT) as a function of the overall system bandwidth, subcarrier spacing, and modulation order. Then, via real-world experiments, we collect data to train, test and compare 7 DL models and 1 baseline threshold-based algorithm in terms of cost and average advance. Finally, we assess whether or not the RTT provided by four different 5G NR network architectures is compatible with the average advance provided by the best-performing one-Dimensional Convolutional Neural Network (1D-CNN). Numerical results show under which conditions the DL-based approach for RUL estimation matches with the RTT performance provided by different 5G NR network architectures.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Guidance in conditional diffusion generation is of great importance for sample quality and controllability. However, existing guidance schemes are to be desired. On one hand, mainstream methods such as classifier guidance and classifier-free guidance both require extra training with labeled data, which is time-consuming and unable to adapt to new conditions. On the other hand, training-free methods such as universal guidance, though more flexible, have yet to demonstrate comparable performance. In this work, through a comprehensive investigation into the design space, we show that it is possible to achieve significant performance improvements over existing guidance schemes by leveraging off-the-shelf classifiers in a training-free fashion, enjoying the best of both worlds. Employing calibration as a general guideline, we propose several pre-conditioning techniques to better exploit pretrained off-the-shelf classifiers for guiding diffusion generation. Extensive experiments on ImageNet validate our proposed method, showing that state-of-the-art diffusion models (DDPM, EDM, DiT) can be further improved (up to 20%) using off-the-shelf classifiers with barely any extra computational cost. With the proliferation of publicly available pretrained classifiers, our proposed approach has great potential and can be readily scaled up to text-to-image generation tasks. The code is available at //github.com/AlexMaOLS/EluCD/tree/main.

Despite the recent success achieved by several two-stage prototypical networks in few-shot named entity recognition (NER) task, the overdetected false spans at the span detection stage and the inaccurate and unstable prototypes at the type classification stage remain to be challenging problems. In this paper, we propose a novel Type-Aware Decomposed framework, namely TadNER, to solve these problems. We first present a type-aware span filtering strategy to filter out false spans by removing those semantically far away from type names. We then present a type-aware contrastive learning strategy to construct more accurate and stable prototypes by jointly exploiting support samples and type names as references. Extensive experiments on various benchmarks prove that our proposed TadNER framework yields a new state-of-the-art performance. Our code and data will be available at //github.com/NLPWM-WHU/TadNER.

There are many evaluation strategies for term rewrite systems, but proving termination automatically is usually easiest for innermost rewriting. Several syntactic criteria exist when innermost termination implies full termination. We adapt these criteria to the probabilistic setting, e.g., we show when it suffices to analyze almost-sure termination (AST) w.r.t. innermost rewriting to prove full AST of probabilistic term rewrite systems (PTRSs). These criteria also apply to other notions of termination like positive AST. We implemented and evaluated our new contributions in the tool AProVE.

In IoT, smart sensors enable data collection, real-time monitoring, decision-making, and automation, but their proliferation exposes them to cybersecurity threats. Zero Trust Architecture enhances IoT security by challenging conventional trust models and emphasizing continuous trust verification in the overall \$875.0 billion IoT market projected by 2025. This paper presents a new zero-trust real-time lightweight access control protocol for Cloud-centric dynamic IoT sensor networks. This protocol empowers data owners, referred to as sensor coordinators, to define intricate access policies, blending recipient identifiers and data-related attributes for data encryption. Additionally, the protocol incorporates efficient cryptographic primitives, eliminating the need for reliance on a trusted party. Furthermore, it ensures real-time data access while preserving data confidentiality and user privacy through seamless data upload to the cloud and the offloading of computationally intensive tasks from resource-constrained data owners and sensors. The protocol utilizes Merkle Trees for lightweight, ongoing trust measurement of sensors, ensuring efficient trust assessment by sensor coordinators. Simultaneously, the cloud conducts thorough trust evaluations for network entities including users. Comprehensive security analysis and performance evaluation highlight the protocol's effectiveness in tackling the multifaceted security challenges of IoT ecosystems while ensuring scalability and high availability.

Multimodal learning seeks to utilize data from multiple sources to improve the overall performance of downstream tasks. It is desirable for redundancies in the data to make multimodal systems robust to missing or corrupted observations in some correlated modalities. However, we observe that the performance of several existing multimodal networks significantly deteriorates if one or multiple modalities are absent at test time. To enable robustness to missing modalities, we propose simple and parameter-efficient adaptation procedures for pretrained multimodal networks. In particular, we exploit low-rank adaptation and modulation of intermediate features to compensate for the missing modalities. We demonstrate that such adaptation can partially bridge performance drop due to missing modalities and outperform independent, dedicated networks trained for the available modality combinations in some cases. The proposed adaptation requires extremely small number of parameters (e.g., fewer than 0.7% of the total parameters in most experiments). We conduct a series of experiments to highlight the robustness of our proposed method using diverse datasets for RGB-thermal and RGB-Depth semantic segmentation, multimodal material segmentation, and multimodal sentiment analysis tasks. Our proposed method demonstrates versatility across various tasks and datasets, and outperforms existing methods for robust multimodal learning with missing modalities.

The Network Revenue Management (NRM) problem is a well-known challenge in dynamic decision-making under uncertainty. In this problem, fixed resources must be allocated to serve customers over a finite horizon, while customers arrive according to a stochastic process. The typical NRM model assumes that customer arrivals are independent over time. However, in this paper, we explore a more general setting where customer arrivals over different periods can be correlated. We propose a model that assumes the existence of a system state, which determines customer arrivals for the current period. This system state evolves over time according to a time-inhomogeneous Markov chain. We show our model can be used to represent correlation in various settings. To solve the NRM problem under our correlated model, we derive a new linear programming (LP) approximation of the optimal policy. Our approximation provides an upper bound on the total expected value collected by the optimal policy. We use our LP to develop a new bid price policy, which computes bid prices for each system state and time period in a backward induction manner. The decision is then made by comparing the reward of the customer against the associated bid prices. Our policy guarantees to collect at least $1/(1+L)$ fraction of the total reward collected by the optimal policy, where $L$ denotes the maximum number of resources required by a customer. In summary, our work presents a Markovian model for correlated customer arrivals in the NRM problem and provides a new LP approximation for solving the problem under this model. We derive a new bid price policy and provides a theoretical guarantee of the performance of the policy.

Mediation analysis is an important statistical tool in many research fields. Its aim is to investigate the mechanism along the causal pathway between an exposure and an outcome. The joint significance test is widely utilized as a prominent statistical approach for examining mediation effects in practical applications. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its popularity and utility. The proposed solution to address this gap is the adaptive joint significance test for one mediator, a novel data-adaptive test for mediation effect that exhibits significant advancements compared to traditional joint significance test. The proposed method is designed to be user-friendly, eliminating the need for complicated procedures. We have derived explicit expressions for size and power, ensuring the theoretical validity of our approach. Furthermore, we extend the proposed adaptive joint significance tests for small-scale mediation hypotheses with family-wise error rate (FWER) control. Additionally, a novel adaptive Sobel-type approach is proposed for the estimation of confidence intervals for the mediation effects, demonstrating significant advancements over conventional Sobel's confidence intervals in terms of achieving desirable coverage probabilities. Our mediation testing and confidence intervals procedure is evaluated through comprehensive simulations, and compared with numerous existing approaches. Finally, we illustrate the usefulness of our method by analysing three real-world datasets with continuous, binary and time-to-event outcomes, respectively.

To mitigate computational power gap between the network core and edges, mobile edge computing (MEC) is poised to play a fundamental role in future generations of wireless networks. In this letter, we consider a non-orthogonal multiple access (NOMA) transmission model to maximize the worst task to be offloaded among all users to the network edge server. A provably convergent and efficient algorithm is developed to solve the considered non-convex optimization problem for maximizing the minimum number of offloaded bits in a multi-user NOMAMEC system. Compared to the approach of optimized orthogonal multiple access (OMA), for given MEC delay, power and energy limits, the NOMA-based system considerably outperforms its OMA-based counterpart in MEC settings. Numerical results demonstrate that the proposed algorithm for NOMA-based MEC is particularly useful for delay sensitive applications.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.

北京阿比特科技有限公司