亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study content caching in a wireless network in which the users are connected through a base station that is equipped with a finite-capacity cache. We assume a fixed set of contents whose popularity varies with time. Users' requests for the content depend on their instantaneous popularity levels. Proactively caching contents at the base station incurs a cost but not having requested contents at the base station also incurs a cost. We propose to proactively cache contents at the base station so as to minimize content missing and caching costs. We formulate the problem as a discounted cost Markov decision problem that is a restless multi-armed bandit problem. We provide conditions under which the problem is indexable and also propose a novel approach to maneuver a few parameters to render the problem indexable. We demonstrate the efficacy of the Whittle index policy via numerical evaluation.

相關內容

This paper studies a multiaccess coded caching (MACC) where the connectivity topology between the users and the caches can be described by a class of combinatorial designs. Our model includes as special cases several MACC topologies considered in previous works. The considered MACC network includes a server containing $N$ files, $\Gamma$ cache nodes and $K$ cacheless users, where each user can access $L$ cache nodes. The server is connected to the users via an error-free shared link, while the users can retrieve the cache content of the connected cache-nodes while the users can directly access the content in their connected cache-nodes. Our goal is to minimise the worst-case transmission load on the shared link in the delivery phase. The main limitation of the existing MACC works is that only some specific access topologies are considered, and thus the number of users $K$ should be either linear or exponential to $\Gamma$. We overcome this limitation by formulating a new access topology derived from two classical combinatorial structures, referred to as the $t$-design and the $t$-group divisible design. In these topologies, $K$ scales linearly, polynomially, or even exponentially with $\Gamma$. By leveraging the properties of the considered combinatorial structures, we propose two classes of coded caching schemes for a flexible number of users, where the number of users can scale linearly, polynomially or exponentially with the number of cache nodes. In addition, our schemes can unify most schemes for the shared link network and unify many schemes for the multi-access network except for the cyclic wrap-around topology.

Many successful methods to learn dynamical systems from data have recently been introduced. However, ensuring that the inferred dynamics preserve known constraints, such as conservation laws or restrictions on the allowed system states, remains challenging. We propose stabilized neural differential equations (SNDEs), a method to enforce arbitrary manifold constraints for neural differential equations. Our approach is based on a stabilization term that, when added to the original dynamics, renders the constraint manifold provably asymptotically stable. Due to its simplicity, our method is compatible with all common neural differential equation (NDE) models and broadly applicable. In extensive empirical evaluations, we demonstrate that SNDEs outperform existing methods while broadening the types of constraints that can be incorporated into NDE training.

Adapters are widely popular parameter-efficient transfer learning approaches in natural language processing that insert trainable modules in between layers of a pre-trained language model. Apart from several heuristics, however, there has been a lack of studies analyzing the optimal number of adapter parameters needed for downstream applications. In this paper, we propose an adapter pruning approach by studying the tropical characteristics of trainable modules. We cast it as an optimization problem that aims to prune parameters from the adapter layers without changing the orientation of underlying tropical hypersurfaces. Our experiments on five NLP datasets show that tropical geometry tends to identify more relevant parameters to prune when compared with the magnitude-based baseline, while a combined approach works best across the tasks.

Scheduling packets with end-to-end deadline constraints in multihop networks is an important problem that has been notoriously difficult to tackle. Recently, there has been progress on this problem in the worst-case traffic setting, with the objective of maximizing the number of packets delivered within their deadlines. Specifically, the proposed algorithms were shown to achieve $\Omega(1/\log(L))$ fraction of the optimal objective value if the minimum link capacity in the network is $C_{\min}=\Omega(\log (L))$, where $L$ is the maximum length of a packet's route in the network (which is bounded by the packet's maximum deadline). However, such guarantees can be quite pessimistic due to the strict worst-case traffic assumption and may not accurately reflect real-world settings. In this work, we aim to address this limitation by exploring whether it is possible to design algorithms that achieve a constant fraction of the optimal value while relaxing the worst-case traffic assumption. We provide a positive answer by demonstrating that in stochastic traffic settings, such as i.i.d. packet arrivals, near-optimal, $(1-\epsilon)$-approximation algorithms can be designed if $C_{\min} = \Omega\big(\frac{\log (L/\epsilon) } {\epsilon^2}\big)$. To the best of our knowledge, this is the first result that shows this problem can be solved near-optimally under nontrivial assumptions on traffic and link capacity. We further present extended simulations using real network traces with non-stationary traffic, which demonstrate that our algorithms outperform worst-case-based algorithms in practical settings.

Gaussian processes are a powerful framework for quantifying uncertainty and for sequential decision-making but are limited by the requirement of solving linear systems. In general, this has a cubic cost in dataset size and is sensitive to conditioning. We explore stochastic gradient algorithms as a computationally efficient method of approximately solving these linear systems: we develop low-variance optimization objectives for sampling from the posterior and extend these to inducing points. Counterintuitively, stochastic gradient descent often produces accurate predictions, even in cases where it does not converge quickly to the optimum. We explain this through a spectral characterization of the implicit bias from non-convergence. We show that stochastic gradient descent produces predictive distributions close to the true posterior both in regions with sufficient data coverage, and in regions sufficiently far away from the data. Experimentally, stochastic gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks. Its uncertainty estimates match the performance of significantly more expensive baselines on a large-scale Bayesian~optimization~task.

Text-attributed graphs (TAGs) are prevalent on the web and research over TAGs such as citation networks, e-commerce networks and social networks has attracted considerable attention in the web community. Recently, large language models (LLMs) have demonstrated exceptional capabilities across a wide range of tasks. However, the existing works focus on harnessing the potential of LLMs solely relying on prompts to convey graph structure information to LLMs, thus suffering from insufficient understanding of the complex structural relationships within TAGs. To address this problem, in this paper we present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs. Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers, enabling LLMs to capture the intricate relationships hidden in text-attributed graphs from multiple structural factors. Furthermore, DGTL operates with frozen pre-trained LLMs, reducing computational costs and allowing much more flexibility in combining with different LLM models. Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines. Additionally, we also demonstrate that our DGTL model can offer natural language explanations for predictions, thereby significantly enhancing model interpretability.

Anomaly detection in imbalanced datasets is a frequent and crucial problem, especially in the medical domain where retrieving and labeling irregularities is often expensive. By combining the generative stability of a $\beta$-variational autoencoder (VAE) with the discriminative strengths of generative adversarial networks (GANs), we propose a novel model, $\beta$-VAEGAN. We investigate methods for composing anomaly scores based on the discriminative and reconstructive capabilities of our model. Existing work focuses on linear combinations of these components to determine if data is anomalous. We advance existing work by training a kernelized support vector machine (SVM) on the respective error components to also consider nonlinear relationships. This improves anomaly detection performance, while allowing faster optimization. Lastly, we use the deviations from the Gaussian prior of $\beta$-VAEGAN to form a novel anomaly score component. In comparison to state-of-the-art work, we improve the $F_1$ score during anomaly detection from 0.85 to 0.92 on the widely used MITBIH Arrhythmia Database.

Domain fronting is a network communication technique that involves leveraging (or abusing) content delivery networks (CDNs) to disguise the final destination of network packets by presenting them as if they were intended for a different domain than their actual endpoint. This technique can be used for both benign and malicious purposes, such as circumventing censorship or hiding malware-related communications from network security systems. Since domain fronting has been known for a few years, some popular CDN providers have implemented traffic filtering approaches to curb its use at their CDN infrastructure. However, it remains unclear to what extent domain fronting has been mitigated. To better understand whether domain fronting can still be effectively used, we propose a systematic approach to discover CDNs that are still prone to domain fronting. To this end, we leverage passive and active DNS traffic analysis to pinpoint domain names served by CDNs and build an automated tool that can be used to discover CDNs that allow domain fronting in their infrastructure. Our results reveal that domain fronting is feasible in 22 out of 30 CDNs that we tested, including some major CDN providers like Akamai and Fastly. This indicates that domain fronting remains widely available and can be easily abused for malicious purposes.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.

北京阿比特科技有限公司