亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Underdetermined generalized absolute value equations (GAVE) has real applications. The underdetermined GAVE may have no solution, one solution, finitely multiple solutions or infinitely many solutions. This paper aims to give some sufficient conditions which guarantee the existence or nonexistence of solutions for the underdetermined GAVE. Particularly, sufficient conditions under which certain or each sign pattern possesses infinitely many solutions of the underdetermined GAVE are given. In addition, iterative methods are developed to solve a solution of the underdetermined GAVE. Some existing results about the square GAVE are extended.

相關內容

Predicting quantum operator matrices such as Hamiltonian, overlap, and density matrices in the density functional theory (DFT) framework is crucial for understanding material properties. Current methods often focus on individual operators and struggle with efficiency and scalability for large systems. Here we introduce a novel deep learning model, SLEM (strictly localized equivariant message-passing) for predicting multiple quantum operators, that achieves state-of-the-art accuracy while dramatically improving computational efficiency. SLEM's key innovation is its strict locality-based design, constructing local, equivariant representations for quantum tensors while preserving physical symmetries. This enables complex many-body dependence without expanding the effective receptive field, leading to superior data efficiency and transferability. Using an innovative SO(2) convolution technique, SLEM reduces the computational complexity of high-order tensor products and is therefore capable of handling systems requiring the $f$ and $g$ orbitals in their basis sets. We demonstrate SLEM's capabilities across diverse 2D and 3D materials, achieving high accuracy even with limited training data. SLEM's design facilitates efficient parallelization, potentially extending DFT simulations to systems with device-level sizes, opening new possibilities for large-scale quantum simulations and high-throughput materials discovery.

We present a novel and mathematically transparent approach to function approximation and the training of large, high-dimensional neural networks, based on the approximate least-squares solution of associated Fredholm integral equations of the first kind by Ritz-Galerkin discretization, Tikhonov regularization and tensor-train methods. Practical application to supervised learning problems of regression and classification type confirm that the resulting algorithms are competitive with state-of-the-art neural network-based methods.

We propose a local discontinuous Galerkin (LDG) method for fractional Korteweg-de Vries equation involving the fractional Laplacian with exponent $\alpha\in (1,2)$ in one and two space dimensions. By decomposing the fractional Laplacian into a first order derivative and a fractional integral, we prove $L^2$-stability of the semi-discrete LDG scheme incorporating suitable interface and boundary fluxes. We analyze the error estimate by considering linear convection term and utilizing the estimate, we derive the error estimate for general nonlinear flux and demonstrate an order of convergence $\mathcal{O}(h^{k+1/2})$. Moreover, the stability and error analysis have been extended to multiple space dimensional case. Numerical illustrations are shown to demonstrate the efficiency of the scheme by obtaining an optimal order of convergence.

Predictive estimation, which comprises model calibration, model prediction, and validation, is a common objective when performing inverse uncertainty quantification (UQ) in diverse scientific applications. These techniques typically require thousands to millions of realisations of the forward model, leading to high computational costs. Surrogate models are often used to approximate these simulations. However, many surrogate models suffer from the fundamental limitation of being unable to estimate plausible high-dimensional outputs, inevitably compromising their use in the UQ framework. To address this challenge, this study introduces an efficient surrogate modelling workflow tailored for high-dimensional outputs. Specifically, a two-step approach is developed: (1) a dimensionality reduction technique is used for extracting data features and mapping the original output space into a reduced space; and (2) a multivariate surrogate model is constructed directly on the reduced space. The combined approach is shown to improve the accuracy of the surrogate model while retaining the computational efficiency required for UQ inversion. The proposed surrogate method, combined with Bayesian inference, is evaluated for a civil engineering application by performing inverse analyses on a laterally loaded pile problem. The results demonstrate the superiority of the proposed framework over traditional surrogate methods in dealing with high-dimensional outputs for sequential inversion analysis.

The class of subweibull distributions has recently been shown to generalize the important properties of subexponential and subgaussian random variables. We describe alternative characterizations of subweibull distributions and detail the conditions under which their tail behavior is preserved after exponential tilting.

The pressure-correction method is a well established approach for simulating unsteady, incompressible fluids. It is well-known that implicit discretization of the time derivative in the momentum equation e.g. using a backward differentiation formula with explicit handling of the nonlinear term results in a conditionally stable method. In certain scenarios, employing explicit time integration in the momentum equation can be advantageous, as it avoids the need to solve for a system matrix involving each differential operator. Additionally, we will demonstrate that the fully discrete method can be expressed in the form of simple matrix-vector multiplications allowing for efficient implementation on modern and highly parallel acceleration hardware. Despite being a common practice in various commercial codes, there is currently no available literature on error analysis for this scenario. In this work, we conduct a theoretical analysis of both implicit and two explicit variants of the pressure-correction method in a fully discrete setting. We demonstrate to which extend the presented implicit and explicit methods exhibit conditional stability. Furthermore, we establish a Courant-Friedrichs-Lewy (CFL) type condition for the explicit scheme and show that the explicit variant demonstrate the same asymptotic behavior as the implicit variant when the CFL condition is satisfied.

A global approximation method of Nystr\"om type is explored for the numerical solution of a class of nonlinear integral equations of the second kind. The cases of smooth and weakly singular kernels are both considered. In the first occurrence, the method uses a Gauss-Legendre rule whereas in the second one resorts to a product rule based on Legendre nodes. Stability and convergence are proved in functional spaces equipped with the uniform norm and several numerical tests are given to show the good performance of the proposed method. An application to the interior Neumann problem for the Laplace equation with nonlinear boundary conditions is also considered.

Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective case of this problem. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to account for the uncertainty in the problem. Scalarisation refers to the procedure that is used to encode the relative importance of each objective to a scalar-valued reward. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. The purpose of this work is to give a thorough exposition on the effects of these different orderings and in particular highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our ``robustify and scalarise'' methodology. To illustrate the efficacy of these new ideas, we present two insightful case studies which are based on real-world data sets.

Neural ordinary differential equations (Neural ODEs) is a class of machine learning models that approximate the time derivative of hidden states using a neural network. They are powerful tools for modeling continuous-time dynamical systems, enabling the analysis and prediction of complex temporal behaviors. However, how to improve the model's stability and physical interpretability remains a challenge. This paper introduces new conservation relations in Neural ODEs using Lie symmetries in both the hidden state dynamics and the back propagation dynamics. These conservation laws are then incorporated into the loss function as additional regularization terms, potentially enhancing the physical interpretability and generalizability of the model. To illustrate this method, the paper derives Lie symmetries and conservation laws in a simple Neural ODE designed to monitor charged particles in a sinusoidal electric field. New loss functions are constructed from these conservation relations, demonstrating the applicability symmetry-regularized Neural ODE in typical modeling tasks, such as data-driven discovery of dynamical systems.

This work explores the representation of univariate and multivariate functions as matrix product states (MPS), also known as quantized tensor-trains (QTT). It proposes an algorithm that employs iterative Chebyshev expansions and Clenshaw evaluations to represent analytic and highly differentiable functions as MPS Chebyshev interpolants. It demonstrates rapid convergence for highly-differentiable functions, aligning with theoretical predictions, and generalizes efficiently to multidimensional scenarios. The performance of the algorithm is compared with that of tensor cross-interpolation (TCI) and multiscale interpolative constructions through a comprehensive comparative study. When function evaluation is inexpensive or when the function is not analytical, TCI is generally more efficient for function loading. However, the proposed method shows competitive performance, outperforming TCI in certain multivariate scenarios. Moreover, it shows advantageous scaling rates and generalizes to a wider range of tasks by providing a framework for function composition in MPS, which is useful for non-linear problems and many-body statistical physics.

北京阿比特科技有限公司