亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Clinical predictive models often rely on patients' electronic health records (EHR), but integrating medical knowledge to enhance predictions and decision-making is challenging. This is because personalized predictions require personalized knowledge graphs (KGs), which are difficult to generate from patient EHR data. To address this, we propose \textsc{GraphCare}, an open-world framework that uses external KGs to improve EHR-based predictions. Our method extracts knowledge from large language models (LLMs) and external biomedical KGs to build patient-specific KGs, which are then used to train our proposed Bi-attention AugmenTed (BAT) graph neural network (GNN) for healthcare predictions. On two public datasets, MIMIC-III and MIMIC-IV, \textsc{GraphCare} surpasses baselines in four vital healthcare prediction tasks: mortality, readmission, length of stay (LOS), and drug recommendation. On MIMIC-III, it boosts AUROC by 17.6\% and 6.6\% for mortality and readmission, and F1-score by 7.9\% and 10.8\% for LOS and drug recommendation, respectively. Notably, \textsc{GraphCare} demonstrates a substantial edge in scenarios with limited data availability. Our findings highlight the potential of using external KGs in healthcare prediction tasks and demonstrate the promise of \textsc{GraphCare} in generating personalized KGs for promoting personalized medicine.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Recently, there has been a growing interest in utilizing large language models (LLMs) in mental health research, with studies showcasing their remarkable capabilities, such as disease detection. However, there is currently a lack of a comprehensive benchmark for evaluating the capability of LLMs in this domain. Therefore, we address this gap by introducing the first comprehensive benchmark tailored to the unique characteristics of the mental health domain. This benchmark encompasses a total of six sub-tasks, covering three dimensions, to systematically assess the capabilities of LLMs in the realm of mental health. We have designed corresponding concise prompts for each sub-task. And we comprehensively evaluate a total of eight advanced LLMs using our benchmark. Experiment results not only demonstrate significant room for improvement in current LLMs concerning mental health but also unveil potential directions for future model optimization.

Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies. Code is available at //motion-lab.github.io/AdaptNet.

Motion planning is a computational problem that finds a sequence of valid trajectories, often based on surrounding agents' forecasting, environmental understanding, and historical and future contexts. It can also be viewed as a game in which agents continuously plan their next move according to other agents' intentions and the encountering environment, further achieving their ultimate goals through incremental actions. To model the dynamic planning and interaction process, we propose a novel framework, DeepEMplanner, which takes the stepwise interaction into account for fine-grained behavior learning. The ego vehicle maximizes each step motion to reach its eventual driving outcome based on the stepwise expectation from agents and its upcoming road conditions. On the other hand, the agents also follow the same philosophy to maximize their stepwise behavior under the encountering environment and the expectations from ego and other agents. Our DeepEMplanner models the interactions among ego, agents, and the dynamic environment in an autoregressive manner by interleaving the Expectation and Maximization processes. Further, we design ego-to-agents, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions. Experiments on the nuScenes benchmark show that our approach achieves state-of-the-art results.

Mobile health programs are becoming an increasingly popular medium for dissemination of health information among beneficiaries in less privileged communities. Kilkari is one of the world's largest mobile health programs which delivers time sensitive audio-messages to pregnant women and new mothers. We have been collaborating with ARMMAN, a non-profit in India which operates the Kilkari program, to identify bottlenecks to improve the efficiency of the program. In particular, we provide an initial analysis of the trajectories of beneficiaries' interaction with the mHealth program and examine elements of the program that can be potentially enhanced to boost its success. We cluster the cohort into different buckets based on listenership so as to analyze listenership patterns for each group that could help boost program success. We also demonstrate preliminary results on using historical data in a time-series prediction to identify beneficiary dropouts and enable NGOs in devising timely interventions to strengthen beneficiary retention.

Image segmentation remains a pivotal component in medical image analysis, aiding in the extraction of critical information for precise diagnostic practices. With the advent of deep learning, automated image segmentation methods have risen to prominence, showcasing exceptional proficiency in processing medical imagery. Motivated by the Segment Anything Model (SAM)-a foundational model renowned for its remarkable precision and robust generalization capabilities in segmenting 2D natural images-we introduce SAM3D, an innovative adaptation tailored for 3D volumetric medical image analysis. Unlike current SAM-based methods that segment volumetric data by converting the volume into separate 2D slices for individual analysis, our SAM3D model processes the entire 3D volume image in a unified approach. Extensive experiments are conducted on multiple medical image datasets to demonstrate that our network attains competitive results compared with other state-of-the-art methods in 3D medical segmentation tasks while being significantly efficient in terms of parameters. Code and checkpoints are available at //github.com/UARK-AICV/SAM3D.

As a privacy-preserving collaborative machine learning paradigm, federated learning (FL) has attracted significant interest from academia and the industry alike. To allow each data owner (a.k.a., FL clients) to train a heterogeneous and personalized local model based on its local data distribution, system resources and requirements on model structure, the field of model-heterogeneous personalized federated learning (MHPFL) has emerged. Existing MHPFL approaches either rely on the availability of a public dataset with special characteristics to facilitate knowledge transfer, incur high computation and communication costs, or face potential model leakage risks. To address these limitations, we propose a model-heterogeneous personalized Federated learning approach based on feature Extractor Sharing (pFedES). It incorporates a small homogeneous feature extractor into each client's heterogeneous local model. Clients train them via the proposed iterative learning method to enable the exchange of global generalized knowledge and local personalized knowledge. The small local homogeneous extractors produced after local training are uploaded to the FL server and for aggregation to facilitate easy knowledge sharing among clients. We theoretically prove that pFedES can converge over wall-to-wall time. Extensive experiments on two real-world datasets against six state-of-the-art methods demonstrate that pFedES builds the most accurate model, while incurring low communication and computation costs. Compared with the best-performing baseline, it achieves 1.61% higher test accuracy, while reducing communication and computation costs by 99.6% and 82.9%, respectively.

Automated medical image segmentation is becoming increasingly crucial to modern clinical practice, driven by the growing demand for precise diagnosis, the push towards personalized treatment plans, and the advancements in machine learning algorithms, especially the incorporation of deep learning methods. While convolutional neural networks (CNN) have been prevalent among these methods, the remarkable potential of Transformer-based models for computer vision tasks is gaining more acknowledgment. To harness the advantages of both CNN-based and Transformer-based models, we propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation. In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images, then the maps are propagated into a bridge layer, which is introduced to sequentially connect the UNet and the Transformer. In this stage, we approach the pixel-level embedding technique without position embedding vectors, aiming to make the model more efficient. Moreover, we apply spatial-reduction attention in the Transformer to reduce the computational/memory overhead. By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements. The proposed model is extensively experimented on seven medical image segmentation datasets including polyp segmentation to demonstrate its efficacy. Comparison with several state-of-the-art segmentation models on these datasets shows the superior performance of our proposed seUNet-Trans network.

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司