亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many optimization problems require balancing multiple conflicting objectives. As gradient descent is limited to single-objective optimization, we introduce its direct generalization: Jacobian descent (JD). This algorithm iteratively updates parameters using the Jacobian matrix of a vector-valued objective function, in which each row is the gradient of an individual objective. While several methods to combine gradients already exist in the literature, they are generally hindered when the objectives conflict. In contrast, we propose projecting gradients to fully resolve conflict while ensuring that they preserve an influence proportional to their norm. We prove significantly stronger convergence guarantees with this approach, supported by our empirical results. Our method also enables instance-wise risk minimization (IWRM), a novel learning paradigm in which the loss of each training example is considered a separate objective. Applied to simple image classification tasks, IWRM exhibits promising results compared to the direct minimization of the average loss. Additionally, we outline an efficient implementation of JD using the Gramian of the Jacobian matrix to reduce time and memory requirements.

相關內容

We propose a sequential Monte Carlo (SMC) method to efficiently and accurately compute cut-Bayesian posterior quantities of interest, variations of standard Bayesian approaches constructed primarily to account for model misspecification. We prove finite sample concentration bounds for estimators derived from the proposed method and apply these results to a realistic setting where a computer model is misspecified. Two theoretically justified variations are presented for making the sequential Monte Carlo estimator more computationally efficient, based on linear tempering and finding suitable permutations of initial parameter draws. We then illustrate the SMC method for inference in a modular chemical reactor example that includes submodels for reaction kinetics, turbulence, mass transfer, and diffusion. The samples obtained are commensurate with a direct-sampling approach that consists of running multiple Markov chains, with computational efficiency gains using the SMC method. Overall, the SMC method presented yields a novel, rigorous approach to computing with cut-Bayesian posterior distributions.

Generative models have emerged as a promising utility to enhance recommender systems. It is essential to model both item content and user-item collaborative interactions in a unified generative framework for better recommendation. Although some existing large language model (LLM)-based methods contribute to fusing content information and collaborative signals, they fundamentally rely on textual language generation, which is not fully aligned with the recommendation task. How to integrate content knowledge and collaborative interaction signals in a generative framework tailored for item recommendation is still an open research challenge. In this paper, we propose content-based collaborative generation for recommender systems, namely ColaRec. ColaRec is a sequence-to-sequence framework which is tailored for directly generating the recommended item identifier. Precisely, the input sequence comprises data pertaining to the user's interacted items, and the output sequence represents the generative identifier (GID) for the suggested item. To model collaborative signals, the GIDs are constructed from a pretrained collaborative filtering model, and the user is represented as the content aggregation of interacted items. To this end, ColaRec captures both collaborative signals and content information in a unified framework. Then an item indexing task is proposed to conduct the alignment between the content-based semantic space and the interaction-based collaborative space. Besides, a contrastive loss is further introduced to ensure that items with similar collaborative GIDs have similar content representations. To verify the effectiveness of ColaRec, we conduct experiments on four benchmark datasets. Empirical results demonstrate the superior performance of ColaRec.

Robust POMDPs extend classical POMDPs to handle model uncertainty. Specifically, robust POMDPs exhibit so-called uncertainty sets on the transition and observation models, effectively defining ranges of probabilities. Policies for robust POMDPs must be (1) memory-based to account for partial observability and (2) robust against model uncertainty to account for the worst-case instances from the uncertainty sets. To compute such robust memory-based policies, we propose the pessimistic iterative planning (PIP) framework, which alternates between two main steps: (1) selecting a pessimistic (non-robust) POMDP via worst-case probability instances from the uncertainty sets; and (2) computing a finite-state controller (FSC) for this pessimistic POMDP. We evaluate the performance of this FSC on the original robust POMDP and use this evaluation in step (1) to select the next pessimistic POMDP. Within PIP, we propose the rFSCNet algorithm. In each iteration, rFSCNet finds an FSC through a recurrent neural network by using supervision policies optimized for the pessimistic POMDP. The empirical evaluation in four benchmark environments showcases improved robustness against several baseline methods and competitive performance compared to a state-of-the-art robust POMDP solver.

Quadrupedal locomotion is a complex, open-ended problem vital to expanding autonomous vehicle reach. Traditional reinforcement learning approaches often fall short due to training instability and sample inefficiency. We propose a novel method leveraging multi-objective evolutionary algorithms as an automatic curriculum learning mechanism, which we named Multi-Objective Learning (MOL). Our approach significantly enhances the learning process by projecting velocity commands into an objective space and optimizing for both performance and diversity. Tested within the MuJoCo physics simulator, our method demonstrates superior stability and adaptability compared to baseline approaches. As such, it achieved 19\% and 44\% fewer errors against our best baseline algorithm in difficult scenarios based on a uniform and tailored evaluation respectively. This work introduces a robust framework for training quadrupedal robots, promising significant advancements in robotic locomotion and open-ended robotic problems.

Recent advancements in solving Bayesian inverse problems have spotlighted denoising diffusion models (DDMs) as effective priors. Although these have great potential, DDM priors yield complex posterior distributions that are challenging to sample. Existing approaches to posterior sampling in this context address this problem either by retraining model-specific components, leading to stiff and cumbersome methods, or by introducing approximations with uncontrolled errors that affect the accuracy of the produced samples. We present an innovative framework, divide-and-conquer posterior sampling, which leverages the inherent structure of DDMs to construct a sequence of intermediate posteriors that guide the produced samples to the target posterior. Our method significantly reduces the approximation error associated with current techniques without the need for retraining. We demonstrate the versatility and effectiveness of our approach for a wide range of Bayesian inverse problems. The code is available at \url{//github.com/Badr-MOUFAD/dcps}

Learning modular object-centric representations is crucial for systematic generalization. Existing methods show promising object-binding capabilities empirically, but theoretical identifiability guarantees remain relatively underdeveloped. Understanding when object-centric representations can theoretically be identified is crucial for scaling slot-based methods to high-dimensional images with correctness guarantees. To that end, we propose a probabilistic slot-attention algorithm that imposes an aggregate mixture prior over object-centric slot representations, thereby providing slot identifiability guarantees without supervision, up to an equivalence relation. We provide empirical verification of our theoretical identifiability result using both simple 2-dimensional data and high-resolution imaging datasets.

The recent introduction of large language models (LLMs) has revolutionized the field of robotics by enabling contextual reasoning and intuitive human-robot interaction in domains as varied as manipulation, locomotion, and self-driving vehicles. When viewed as a stand-alone technology, LLMs are known to be vulnerable to jailbreaking attacks, wherein malicious prompters elicit harmful text by bypassing LLM safety guardrails. To assess the risks of deploying LLMs in robotics, in this paper, we introduce RoboPAIR, the first algorithm designed to jailbreak LLM-controlled robots. Unlike existing, textual attacks on LLM chatbots, RoboPAIR elicits harmful physical actions from LLM-controlled robots, a phenomenon we experimentally demonstrate in three scenarios: (i) a white-box setting, wherein the attacker has full access to the NVIDIA Dolphins self-driving LLM, (ii) a gray-box setting, wherein the attacker has partial access to a Clearpath Robotics Jackal UGV robot equipped with a GPT-4o planner, and (iii) a black-box setting, wherein the attacker has only query access to the GPT-3.5-integrated Unitree Robotics Go2 robot dog. In each scenario and across three new datasets of harmful robotic actions, we demonstrate that RoboPAIR, as well as several static baselines, finds jailbreaks quickly and effectively, often achieving 100% attack success rates. Our results reveal, for the first time, that the risks of jailbroken LLMs extend far beyond text generation, given the distinct possibility that jailbroken robots could cause physical damage in the real world. Indeed, our results on the Unitree Go2 represent the first successful jailbreak of a deployed commercial robotic system. Addressing this emerging vulnerability is critical for ensuring the safe deployment of LLMs in robotics. Additional media is available at: //robopair.org

In semi-supervised semantic segmentation (SSS), weak-to-strong consistency regularization techniques are widely utilized in recent works, typically combined with input-level and feature-level perturbations. However, the integration between weak-to-strong consistency regularization and network perturbation has been relatively rare. We note several problems with existing network perturbations in SSS that may contribute to this phenomenon. By revisiting network perturbations, we introduce a new approach for network perturbation to expand the existing weak-to-strong consistency regularization for unlabeled data. Additionally, we present a volatile learning process for labeled data, which is uncommon in existing research. Building upon previous work that includes input-level and feature-level perturbations, we present MLPMatch (Multi-Level-Perturbation Match), an easy-to-implement and efficient framework for semi-supervised semantic segmentation. MLPMatch has been validated on the Pascal VOC and Cityscapes datasets, achieving state-of-the-art performance. Code is available from //github.com/LlistenL/MLPMatch.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司