In this manuscript, we propose efficient stochastic semi-explicit symplectic schemes tailored for nonseparable stochastic Hamiltonian systems (SHSs). These semi-explicit symplectic schemes are constructed by introducing augmented Hamiltonians and using symmetric projection. In the case of the artificial restraint in augmented Hamiltonians being zero, the proposed schemes also preserve quadratic invariants, making them suitable for developing semi-explicit charge-preserved multi-symplectic schemes for stochastic cubic Schr\"odinger equations with multiplicative noise. Through numerical experiments that validate theoretical results, we demonstrate that the proposed stochastic semi-explicit symplectic scheme, which features a straightforward Newton iteration solver, outperforms the traditional stochastic midpoint scheme in terms of effectiveness and accuracy.
We analyze the anti-symmetric properties of a spectral discretization for the one-dimensional Vlasov-Poisson equations. The discretization is based on a spectral expansion in velocity with the symmetrically weighted Hermite basis functions, central finite differencing in space, and an implicit Runge Kutta integrator in time. The proposed discretization preserves the anti-symmetric structure of the advection operator in the Vlasov equation, resulting in a stable numerical method. We apply such discretization to two formulations: the canonical Vlasov-Poisson equations and their continuously transformed square-root representation. The latter preserves the positivity of the particle distribution function. We derive analytically the conservation properties of both formulations, including particle number, momentum, and energy, which are verified numerically on the following benchmark problems: manufactured solution, linear and nonlinear Landau damping, two-stream instability, bump-on-tail instability, and ion-acoustic wave.
Probabilistic forecasts comprehensively describe the uncertainty in the unknown future outcome, making them essential for decision making and risk management. While several methods have been introduced to evaluate probabilistic forecasts, existing evaluation techniques are ill-suited to the evaluation of tail properties of such forecasts. However, these tail properties are often of particular interest to forecast users due to the severe impacts caused by extreme outcomes. In this work, we introduce a general notion of tail calibration for probabilistic forecasts, which allows forecasters to assess the reliability of their predictions for extreme outcomes. We study the relationships between tail calibration and standard notions of forecast calibration, and discuss connections to peaks-over-threshold models in extreme value theory. Diagnostic tools are introduced and applied in a case study on European precipitation forecasts
The Business Process Modeling Notation (BPMN) is a widely used standard notation for defining intra- and inter-organizational workflows. However, the informal description of the BPMN execution semantics leads to different interpretations of BPMN elements and difficulties in checking behavioral properties. In this article, we propose a formalization of the execution semantics of BPMN that, compared to existing approaches, covers more BPMN elements while also facilitating property checking. Our approach is based on a higher-order transformation from BPMN models to graph transformation systems. To show the capabilities of our approach, we implemented it as an open-source web-based tool.
We study the asymptotic properties of an estimator of Hurst parameter of a stochastic differential equation driven by a fractional Brownian motion with $H > 1/2$. Utilizing the theory of asymptotic expansion of Skorohod integrals introduced by Nualart and Yoshida [NY19], we derive an asymptotic expansion formula of the distribution of the estimator. As an corollary, we also obtain a mixed central limit theorem for the statistic, indicating that the rate of convergence is $n^{-\frac12}$, which improves the results in the previous literature. To handle second-order quadratic variations appearing in the estimator, a theory of exponent has been developed based on weighted graphs to estimate asymptotic orders of norms of functionals involved.
We explore theoretical aspects of boundary conditions for lattice Boltzmann methods, focusing on a toy two-velocities scheme. By mapping lattice Boltzmann schemes to Finite Difference schemes, we facilitate rigorous consistency and stability analyses. We develop kinetic boundary conditions for inflows and outflows, highlighting the trade-off between accuracy and stability, which we successfully overcome. Stability is assessed using GKS (Gustafsson, Kreiss, and Sundstr{\"o}m) analysis and -- when this approach fails on coarse meshes -- spectral and pseudo-spectral analyses of the scheme's matrix that explain effects germane to low resolutions.
In the common partially linear single-index model we establish a Bahadur representation for a smoothing spline estimator of all model parameters and use this result to prove the joint weak convergence of the estimator of the index link function at a given point, together with the estimators of the parametric regression coefficients. We obtain the surprising result that, despite of the nature of single-index models where the link function is evaluated at a linear combination of the index-coefficients, the estimator of the link function and the estimator of the index-coefficients are asymptotically independent. Our approach leverages a delicate analysis based on reproducing kernel Hilbert space and empirical process theory. We show that the smoothing spline estimator achieves the minimax optimal rate with respect to the $L^2$-risk and consider several statistical applications where joint inference on all model parameters is of interest. In particular, we develop a simultaneous confidence band for the link function and propose inference tools to investigate if the maximum absolute deviation between the (unknown) link function and a given function exceeds a given threshold. We also construct tests for joint hypotheses regarding model parameters which involve both the nonparametric and parametric components and propose novel multiplier bootstrap procedures to avoid the estimation of unknown asymptotic quantities.
We propose a novel framework of generalised Petrov-Galerkin Dynamical Low Rank Approximations (DLR) in the context of random PDEs. It builds on the standard Dynamical Low Rank Approximations in their Dynamically Orthogonal formulation. It allows to seamlessly build-in many standard and well-studied stabilisation techniques that can be framed as either generalised Galerkin methods, or Petrov-Galerkin methods. The framework is subsequently applied to the case of Streamine Upwind/Petrov Galerkin (SUPG) stabilisation of advection-dominated problems with small stochastic perturbations of the transport field. The norm-stability properties of two time discretisations are analysed. Numerical experiments confirm that the stabilising properties of the SUPG method naturally carry over to the DLR framework.
We propose ParaPIF, a parareal based time parallelization scheme for the particle-in-Fourier (PIF) discretization of the Vlasov-Poisson system used in kinetic plasma simulations. Our coarse propagators are based on the coarsening of the numerical discretization scheme combined with, if possible, temporal coarsening rather than coarsening of particles and/or Fourier modes, which are not possible or effective for PIF schemes. Specifically, we use PIF with a coarse tolerance for nonuniform FFTs or even the standard particle-in-cell schemes as coarse propagators for the ParaPIF algorithm. We state and prove the convergence of the algorithm and verify the results numerically with Landau damping, two-stream instability, and Penning trap test cases in 3D-3V. We also implement the space-time parallelization of the PIF schemes in the open-source, performance-portable library IPPL and conduct scaling studies up to 1536 A100 GPUs on the JUWELS booster supercomputer. The space-time parallelization utilizing the ParaPIF algorithm for the time parallelization provides up to $4-6$ times speedup compared to spatial parallelization alone and achieves a push rate of around 1 billion particles per second for the benchmark plasma mini-apps considered.
The purpose of this technical note is to summarize the relationship between the marginal variance and correlation length of a Gaussian random field with Mat\'ern covariance and the coefficients of the corresponding partial-differential-equation (PDE)-based precision operator.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.