亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing 3D scene understanding tasks have achieved high performance on close-set benchmarks but fail to handle novel categories in real-world applications. To this end, we propose a Regional Point-Language Contrastive learning framework, namely RegionPLC, for open-world 3D scene understanding, which equips models trained on closed-set datasets with open-vocabulary recognition capabilities. We propose dense visual prompts to elicit region-level visual-language knowledge from 2D foundation models via captioning, which further allows us to build dense regional point-language associations. Then, we design a point-discriminative contrastive learning objective to enable point-independent learning from captions for dense scene understanding. We conduct extensive experiments on ScanNet, ScanNet200, and nuScenes datasets. Our RegionPLC significantly outperforms previous base-annotated 3D open-world scene understanding approaches by an average of 11.6\% and 6.6\% for semantic and instance segmentation, respectively. It also shows promising open-world results in absence of any human annotation with low training and inference costs. Code will be released.

相關內容

As it is hard to calibrate single-view RGB images in the wild, existing 3D human mesh reconstruction (3DHMR) methods either use a constant large focal length or estimate one based on the background environment context, which can not tackle the problem of the torso, limb, hand or face distortion caused by perspective camera projection when the camera is close to the human body. The naive focal length assumptions can harm this task with the incorrectly formulated projection matrices. To solve this, we propose Zolly, the first 3DHMR method focusing on perspective-distorted images. Our approach begins with analysing the reason for perspective distortion, which we find is mainly caused by the relative location of the human body to the camera center. We propose a new camera model and a novel 2D representation, termed distortion image, which describes the 2D dense distortion scale of the human body. We then estimate the distance from distortion scale features rather than environment context features. Afterwards, we integrate the distortion feature with image features to reconstruct the body mesh. To formulate the correct projection matrix and locate the human body position, we simultaneously use perspective and weak-perspective projection loss. Since existing datasets could not handle this task, we propose the first synthetic dataset PDHuman and extend two real-world datasets tailored for this task, all containing perspective-distorted human images. Extensive experiments show that Zolly outperforms existing state-of-the-art methods on both perspective-distorted datasets and the standard benchmark (3DPW).

This paper presents ER-NeRF, a novel conditional Neural Radiance Fields (NeRF) based architecture for talking portrait synthesis that can concurrently achieve fast convergence, real-time rendering, and state-of-the-art performance with small model size. Our idea is to explicitly exploit the unequal contribution of spatial regions to guide talking portrait modeling. Specifically, to improve the accuracy of dynamic head reconstruction, a compact and expressive NeRF-based Tri-Plane Hash Representation is introduced by pruning empty spatial regions with three planar hash encoders. For speech audio, we propose a Region Attention Module to generate region-aware condition feature via an attention mechanism. Different from existing methods that utilize an MLP-based encoder to learn the cross-modal relation implicitly, the attention mechanism builds an explicit connection between audio features and spatial regions to capture the priors of local motions. Moreover, a direct and fast Adaptive Pose Encoding is introduced to optimize the head-torso separation problem by mapping the complex transformation of the head pose into spatial coordinates. Extensive experiments demonstrate that our method renders better high-fidelity and audio-lips synchronized talking portrait videos, with realistic details and high efficiency compared to previous methods.

This paper presents a set of industrial-grade text processing models for Hungarian that achieve near state-of-the-art performance while balancing resource efficiency and accuracy. Models have been implemented in the spaCy framework, extending the HuSpaCy toolkit with several improvements to its architecture. Compared to existing NLP tools for Hungarian, all of our pipelines feature all basic text processing steps including tokenization, sentence-boundary detection, part-of-speech tagging, morphological feature tagging, lemmatization, dependency parsing and named entity recognition with high accuracy and throughput. We thoroughly evaluated the proposed enhancements, compared the pipelines with state-of-the-art tools and demonstrated the competitive performance of the new models in all text preprocessing steps. All experiments are reproducible and the pipelines are freely available under a permissive license.

We present a novel defense, against backdoor attacks on Deep Neural Networks (DNNs), wherein adversaries covertly implant malicious behaviors (backdoors) into DNNs. Our defense falls within the category of post-development defenses that operate independently of how the model was generated. The proposed defense is built upon a novel reverse engineering approach that can directly extract backdoor functionality of a given backdoored model to a backdoor expert model. The approach is straightforward -- finetuning the backdoored model over a small set of intentionally mislabeled clean samples, such that it unlearns the normal functionality while still preserving the backdoor functionality, and thus resulting in a model (dubbed a backdoor expert model) that can only recognize backdoor inputs. Based on the extracted backdoor expert model, we show the feasibility of devising highly accurate backdoor input detectors that filter out the backdoor inputs during model inference. Further augmented by an ensemble strategy with a finetuned auxiliary model, our defense, BaDExpert (Backdoor Input Detection with Backdoor Expert), effectively mitigates 16 SOTA backdoor attacks while minimally impacting clean utility. The effectiveness of BaDExpert has been verified on multiple datasets (CIFAR10, GTSRB and ImageNet) across various model architectures (ResNet, VGG, MobileNetV2 and Vision Transformer).

Image segmentation plays an essential role in nuclei image analysis. Recently, the segment anything model has made a significant breakthrough in such tasks. However, the current model exists two major issues for cell segmentation: (1) the image encoder of the segment anything model involves a large number of parameters. Retraining or even fine-tuning the model still requires expensive computational resources. (2) in point prompt mode, points are sampled from the center of the ground truth and more than one set of points is expected to achieve reliable performance, which is not efficient for practical applications. In this paper, a single-point prompt network is proposed for nuclei image segmentation, called SPPNet. We replace the original image encoder with a lightweight vision transformer. Also, an effective convolutional block is added in parallel to extract the low-level semantic information from the image and compensate for the performance degradation due to the small image encoder. We propose a new point-sampling method based on the Gaussian kernel. The proposed model is evaluated on the MoNuSeg-2018 dataset. The result demonstrated that SPPNet outperforms existing U-shape architectures and shows faster convergence in training. Compared to the segment anything model, SPPNet shows roughly 20 times faster inference, with 1/70 parameters and computational cost. Particularly, only one set of points is required in both the training and inference phases, which is more reasonable for clinical applications. The code for our work and more technical details can be found at //github.com/xq141839/SPPNet.

Knowledge base question answering (KBQA) is a critical yet challenging task due to the vast number of entities within knowledge bases and the diversity of natural language questions posed by users. Unfortunately, the performance of most KBQA models tends to decline significantly in real-world scenarios where high-quality annotated data is insufficient. To mitigate the burden associated with manual annotation, we introduce FlexKBQA by utilizing Large Language Models (LLMs) as program translators for addressing the challenges inherent in the few-shot KBQA task. Specifically, FlexKBQA leverages automated algorithms to sample diverse programs, such as SPARQL queries, from the knowledge base, which are subsequently converted into natural language questions via LLMs. This synthetic dataset facilitates training a specialized lightweight model for the KB. Additionally, to reduce the barriers of distribution shift between synthetic data and real user questions, FlexKBQA introduces an executionguided self-training method to iterative leverage unlabeled user questions. Furthermore, we explore harnessing the inherent reasoning capability of LLMs to enhance the entire framework. Consequently, FlexKBQA delivers substantial flexibility, encompassing data annotation, deployment, and being domain agnostic. Through extensive experiments on GrailQA, WebQSP, and KQA Pro, we observe that under the few-shot even the more challenging zero-shot scenarios, FlexKBQA achieves impressive results with a few annotations, surpassing all previous baselines and even approaching the performance of supervised models, achieving a remarkable 93% performance relative to the fully-supervised models. We posit that FlexKBQA represents a significant advancement towards exploring better integration of large and lightweight models. The code is open-sourced.

Recent strides in Text-to-3D techniques have been propelled by distilling knowledge from powerful large text-to-image diffusion models (LDMs). Nonetheless, existing Text-to-3D approaches often grapple with challenges such as over-saturation, inadequate detailing, and unrealistic outputs. This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues. Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images based on the renderings of coarse 3D models. Although the generated images mostly alleviate the aforementioned issues, challenges such as view inconsistency and significant content variance persist due to the inherent generative nature of large diffusion models, posing extensive difficulties in leveraging these images effectively. To overcome this hurdle, we advocate integrating a discriminator alongside a novel Diffusion-GAN dual training strategy to guide the training of 3D models. For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data. We conduct a comprehensive set of experiments that demonstrate the effectiveness of our method over baseline approaches.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

北京阿比特科技有限公司