亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

If $A$ and $B$ are sets such that $A \subset B$, generalisation may be understood as the inference from $A$ of a hypothesis sufficient to construct $B$. One might infer any number of hypotheses from $A$, yet only some of those may generalise to $B$. How can one know which are likely to generalise? One strategy is to choose the shortest, equating the ability to compress information with the ability to generalise (a proxy for intelligence). We examine this in the context of a mathematical formalism of enactive cognition. We show that compression is neither necessary nor sufficient to maximise performance (measured in terms of the probability of a hypothesis generalising). We formulate a proxy unrelated to length or simplicity, called weakness. We show that if tasks are uniformly distributed, then there is no choice of proxy that performs at least as well as weakness maximisation in all tasks while performing strictly better in at least one. In other words, weakness is the pareto optimal choice of proxy. In experiments comparing maximum weakness and minimum description length in the context of binary arithmetic, the former generalised at between $1.1$ and $5$ times the rate of the latter. We argue this demonstrates that weakness is a far better proxy, and explains why Deepmind's Apperception Engine is able to generalise effectively.

相關內容

The identification of interesting substructures within jets is an important tool for searching for new physics and probing the Standard Model at colliders. Many of these substructure tools have previously been shown to take the form of optimal transport problems, in particular the Energy Mover's Distance (EMD). In this work, we show that the EMD is in fact the natural structure for comparing collider events, which accounts for its recent success in understanding event and jet substructure. We then present a Shape Hunting Algorithm using Parameterized Energy Reconstruction (SHAPER), which is a general framework for defining and computing shape-based observables. SHAPER generalizes N-jettiness from point clusters to any extended, parametrizable shape. This is accomplished by efficiently minimizing the EMD between events and parameterized manifolds of energy flows representing idealized shapes, implemented using the dual-potential Sinkhorn approximation of the Wasserstein metric. We show how the geometric language of observables as manifolds can be used to define novel observables with built-in infrared-and-collinear safety. We demonstrate the efficacy of the SHAPER framework by performing empirical jet substructure studies using several examples of new shape-based observables.

Estimation-of-distribution algorithms (EDAs) are optimization algorithms that learn a distribution on the search space from which good solutions can be sampled easily. A key parameter of most EDAs is the sample size (population size). If the population size is too small, the update of the probabilistic model builds on few samples, leading to the undesired effect of genetic drift. Too large population sizes avoid genetic drift, but slow down the process. Building on a recent quantitative analysis of how the population size leads to genetic drift, we design a smart-restart mechanism for EDAs. By stopping runs when the risk for genetic drift is high, it automatically runs the EDA in good parameter regimes. Via a mathematical runtime analysis, we prove a general performance guarantee for this smart-restart scheme. This in particular shows that in many situations where the optimal (problem-specific) parameter values are known, the restart scheme automatically finds these, leading to the asymptotically optimal performance. We also conduct an extensive experimental analysis. On four classic benchmark problems, we clearly observe the critical influence of the population size on the performance, and we find that the smart-restart scheme leads to a performance close to the one obtainable with optimal parameter values. Our results also show that previous theory-based suggestions for the optimal population size can be far from the optimal ones, leading to a performance clearly inferior to the one obtained via the smart-restart scheme. We also conduct experiments with PBIL (cross-entropy algorithm) on two combinatorial optimization problems from the literature, the max-cut problem and the bipartition problem. Again, we observe that the smart-restart mechanism finds much better values for the population size than those suggested in the literature, leading to a much better performance.

In computational biology, $k$-mers and edit distance are fundamental concepts. However, little is known about the metric space of all $k$-mers equipped with the edit distance. In this work, we explore the structure of the $k$-mer space by studying its maximal independent sets (MISs). An MIS is a sparse sketch of all $k$-mers with nice theoretical properties, and therefore admits critical applications in clustering, indexing, hashing, and sketching large-scale sequencing data, particularly those with high error-rates. Finding an MIS is a challenging problem, as the size of a $k$-mer space grows geometrically with respect to $k$. We propose three algorithms for this problem. The first and the most intuitive one uses a greedy strategy. The second method implements two techniques to avoid redundant comparisons by taking advantage of the locality-property of the $k$-mer space and the estimated bounds on the edit distance. The last algorithm avoids expensive calculations of the edit distance by translating the edit distance into the shortest path in a specifically designed graph. These algorithms are implemented and the calculated MISs of $k$-mer spaces and their statistical properties are reported and analyzed for $k$ up to 15. Source code is freely available at //github.com/Shao-Group/kmerspace .

Negative control is a common technique in scientific investigations and broadly refers to the situation where a null effect (''negative result'') is expected. Motivated by a real proteomic dataset, we will present three promising and closely connected methods of using negative controls to assist simultaneous hypothesis testing. The first method uses negative controls to construct a permutation p-value for every hypothesis under investigation, and we give several sufficient conditions for such p-values to be valid and positive regression dependent on the set (PRDS) of true nulls. The second method uses negative controls to construct an estimate of the false discovery rate (FDR), and we give a sufficient condition under which the step-up procedure based on this estimate controls the FDR. The third method, derived from an existing ad hoc algorithm for proteomic analysis, uses negative controls to construct a nonparametric estimator of the local false discovery rate. We conclude with some practical suggestions and connections to some closely related methods that are propsed recently.

Traditional signal processing methods relying on mathematical data generation models have been cast aside in favour of deep neural networks, which require vast amounts of data. Since the theoretical sample complexity is nearly impossible to evaluate, these amounts of examples are usually estimated with crude rules of thumb. However, these rules only suggest when the networks should work, but do not relate to the traditional methods. In particular, an interesting question is: how much data is required for neural networks to be on par or outperform, if possible, the traditional model-based methods? In this work, we empirically investigate this question in two simple examples, where the data is generated according to precisely defined mathematical models, and where well-understood optimal or state-of-the-art mathematical data-agnostic solutions are known. A first problem is deconvolving one-dimensional Gaussian signals and a second one is estimating a circle's radius and location in random grayscale images of disks. By training various networks, either naive custom designed or well-established ones, with various amounts of training data, we find that networks require tens of thousands of examples in comparison to the traditional methods, whether the networks are trained from scratch or even with transfer-learning or finetuning.

In the 1950s Horace Barlow and Fred Attneave suggested a connection between sensory systems and how they are adapted to the environment: early vision evolved to maximise the information it conveys about incoming signals. Following Shannon's definition, this information was described using the probability of the images taken from natural scenes. Previously, direct accurate predictions of image probabilities were not possible due to computational limitations. Despite the exploration of this idea being indirect, mainly based on oversimplified models of the image density or on system design methods, these methods had success in reproducing a wide range of physiological and psychophysical phenomena. In this paper, we directly evaluate the probability of natural images and analyse how it may determine perceptual sensitivity. We employ image quality metrics that correlate well with human opinion as a surrogate of human vision, and an advanced generative model to directly estimate the probability. Specifically, we analyse how the sensitivity of full-reference image quality metrics can be predicted from quantities derived directly from the probability distribution of natural images. First, we compute the mutual information between a wide range of probability surrogates and the sensitivity of the metrics and find that the most influential factor is the probability of the noisy image. Then we explore how these probability surrogates can be combined using a simple model to predict the metric sensitivity, giving an upper bound for the correlation of 0.85 between the model predictions and the actual perceptual sensitivity. Finally, we explore how to combine the probability surrogates using simple expressions, and obtain two functional forms (using one or two surrogates) that can be used to predict the sensitivity of the human visual system given a particular pair of images.

New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies.

The Weibull distribution, with shape parameter $k>0$ and scale parameter $\lambda>0$, is one of the most popular parametric distributions in survival analysis with complete or censored data. Although inference of the parameters of the Weibull distribution is commonly done through maximum likelihood, it is well established that the maximum likelihood estimate of the shape parameter is inadequate due to the associated large bias when the sample size is small or the proportion of censored data is large. This manuscript demonstrates how the Bayesian information-theoretic minimum message length principle coupled with a suitable choice of weakly informative prior distributions, can be used to infer Weibull distribution parameters given complete data or data with type I censoring. Empirical experiments show that the proposed minimum message length estimate of the shape parameter is superior to the maximum likelihood estimate and appears superior to other recently proposed modified maximum likelihood estimates in terms of Kullback-Leibler risk. Lastly, we derive an extension of the proposed method to data with type II censoring.

Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司