In this paper, we investigate hypothesis testing for the linear combination of mean vectors across multiple populations through the method of random integration. We have established the asymptotic distributions of the test statistics under both null and alternative hypotheses. Additionally, we provide a theoretical explanation for the special use of our test statistics in situations when the nonzero signal in the linear combination of the true mean vectors is weakly dense. Moreover, Monte-Carlo simulations are presented to evaluate the suggested test against existing high-dimensional tests. The findings from these simulations reveal that our test not only aligns with the performance of other tests in terms of size but also exhibits superior power.
Recent advances unveiled physical neural networks as promising machine learning platforms, offering faster and more energy-efficient information processing. Compared with extensively-studied optical neural networks, the development of mechanical neural networks (MNNs) remains nascent and faces significant challenges, including heavy computational demands and learning with approximate gradients. Here, we introduce the mechanical analogue of in situ backpropagation to enable highly efficient training of MNNs. We demonstrate that the exact gradient can be obtained locally in MNNs, enabling learning through their immediate vicinity. With the gradient information, we showcase the successful training of MNNs for behavior learning and machine learning tasks, achieving high accuracy in regression and classification. Furthermore, we present the retrainability of MNNs involving task-switching and damage, demonstrating the resilience. Our findings, which integrate the theory for training MNNs and experimental and numerical validations, pave the way for mechanical machine learning hardware and autonomous self-learning material systems.
As mini UAVs become increasingly useful in the civilian work domain, the need for a method for them to operate safely in a cluttered environment is growing, especially for fixed-wing UAVs as they are incapable of following the stop-decide-execute methodology. This paper presents preliminary research to design a reactive collision avoidance algorithm based on the improved definition of the repulsive forces used in the Artificial potential field algorithms to allow feasible and safe navigation of fixed-wing UAVs in cluttered, dynamic environments. We present simulation results of the improved definition in multiple scenarios, and we have also discussed possible future studies to improve upon these results.
This paper focuses on investigating Stein's invariant shrinkage estimators for large sample covariance matrices and precision matrices in high-dimensional settings. We consider models that have nearly arbitrary population covariance matrices, including those with potential spikes. By imposing mild technical assumptions, we establish the asymptotic limits of the shrinkers for a wide range of loss functions. A key contribution of this work, enabling the derivation of the limits of the shrinkers, is a novel result concerning the asymptotic distributions of the non-spiked eigenvectors of the sample covariance matrices, which can be of independent interest.
Many analyses of multivariate data focus on evaluating the dependence between two sets of variables, rather than the dependence among individual variables within each set. Canonical correlation analysis (CCA) is a classical data analysis technique that estimates parameters describing the dependence between such sets. However, inference procedures based on traditional CCA rely on the assumption that all variables are jointly normally distributed. We present a semiparametric approach to CCA in which the multivariate margins of each variable set may be arbitrary, but the dependence between variable sets is described by a parametric model that provides low-dimensional summaries of dependence. While maximum likelihood estimation in the proposed model is intractable, we propose two estimation strategies: one using a pseudolikelihood for the model and one using a Markov chain Monte Carlo (MCMC) algorithm that provides Bayesian estimates and confidence regions for the between-set dependence parameters. The MCMC algorithm is derived from a multirank likelihood function, which uses only part of the information in the observed data in exchange for being free of assumptions about the multivariate margins. We apply the proposed Bayesian inference procedure to Brazilian climate data and monthly stock returns from the materials and communications market sectors.
In this paper, we introduce the cumulative past information generating function (CPIG) and relative cumulative past information generating function (RCPIG). We study its properties. We establish its relation with generalized cumulative past entropy (GCPE). We defined CPIG stochastic order and its relation with dispersive order. We provide the results for the CPIG measure of the convoluted random variables in terms of the measures of its components. We found some inequality relating to Shannon entropy, CPIG and GCPE. Some characterization and estimation results are also discussed regarding CPIG. We defined divergence measures between two random variables, Jensen-cumulative past information generating function(JCPIG), Jensen fractional cumulative past entropy measure, cumulative past Taneja entropy, and Jensen cumulative past Taneja entropy information measure.
In this paper, we study the numerical method for the bi-Laplace problems with inhomogeneous coefficients; particularly, we propose finite element schemes on rectangular grids respectively for an inhomogeneous fourth-order elliptic singular perturbation problem and for the Helmholtz transmission eigenvalue problem. The new methods use the reduced rectangle Morley (RRM for short) element space with piecewise quadratic polynomials, which are of the lowest degree possible. For the finite element space, a discrete analogue of an equality by Grisvard is proved for the stability issue and a locally-averaged interpolation operator is constructed for the approximation issue. Optimal convergence rates of the schemes are proved, and numerical experiments are given to verify the theoretical analysis.
In this work we study the stability, convergence, and pressure-robustness of discretization methods for incompressible flows with hybrid velocity and pressure. Specifically, focusing on the Stokes problem, we identify a set of assumptions that yield inf-sup stability as well as error estimates which distinguish the velocity- and pressure-related contributions to the error. We additionally identify the key properties under which the pressure-related contributions vanish in the estimate of the velocity, thus leading to pressure-robustness. Several examples of existing and new schemes that fit into the framework are provided, and extensive numerical validation of the theoretical properties is provided.
Relying on sheaf theory, we introduce the notions of projected barcodes and projected distances for multi-parameter persistence modules. Projected barcodes are defined as derived pushforward of persistence modules onto $\mathbb{R}$. Projected distances come in two flavors: the integral sheaf metrics (ISM) and the sliced convolution distances (SCD). We conduct a systematic study of the stability of projected barcodes and show that the fibered barcode is a particular instance of projected barcodes. We prove that the ISM and the SCD provide lower bounds for the convolution distance. Furthermore, we show that the $\gamma$-linear ISM and the $\gamma$-linear SCD which are projected distances tailored for $\gamma$-sheaves can be computed using TDA software dedicated to one-parameter persistence modules. Moreover, the time and memory complexity required to compute these two metrics are advantageous since our approach does not require computing nor storing an entire $n$-persistence module.
In this paper, we introduce a novel statistical model for the integrative analysis of Riemannian-valued functional data and high-dimensional data. We apply this model to explore the dependence structure between each subject's dynamic functional connectivity -- represented by a temporally indexed collection of positive definite covariance matrices -- and high-dimensional data representing lifestyle, demographic, and psychometric measures. Specifically, we employ a reformulation of canonical correlation analysis that enables efficient control of the complexity of the functional canonical directions using tangent space sieve approximations. Additionally, we enforce an interpretable group structure on the high-dimensional canonical directions via a sparsity-promoting penalty. The proposed method shows improved empirical performance over alternative approaches and comes with theoretical guarantees. Its application to data from the Human Connectome Project reveals a dominant mode of covariation between dynamic functional connectivity and lifestyle, demographic, and psychometric measures. This mode aligns with results from static connectivity studies but reveals a unique temporal non-stationary pattern that such studies fail to capture.
Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.